Compute subject-specific transition hazards with (co-)variances
This function computes subject-specific or overall cumulative transition hazards for each of the possible transitions in the multi-state model. If requested, also the variances and covariances of the estimated cumulative transition hazards are calculated.
msfit( object, newdata, variance = TRUE, vartype = c("aalen", "greenwood"), trans )
object |
A |
newdata |
A data frame with the same variable names as those that
appear in the |
variance |
A logical value indicating whether the (co-)variances of the
subject-specific transition hazards should be computed. Default is
|
vartype |
A character string specifying the type of variances to be
computed (so only needed if |
trans |
Transition matrix describing the states and transitions in the
multi-state model. See |
The data frame needs to have one row for each transition in the multi-state
model. An additional column strata
(numeric) is needed to describe
for each transition to which stratum it belongs. The name has to be
strata
, even if in the original coxph
call another variable
was used. For details refer to de Wreede, Fiocco & Putter (2010). So far,
the results have been checked only for the "breslow"
method of
dealing with ties in coxph
, so this is
recommended.
An object of class "msfit"
, which is a list containing
Haz |
A data frame with |
varHaz |
A data frame with
|
trans |
The transition matrix used |
Hein Putter H.Putter@lumc.nl
Putter H, Fiocco M, Geskus RB (2007). Tutorial in biostatistics: Competing risks and multi-state models. Statistics in Medicine 26, 2389–2430.
Therneau TM, Grambsch PM (2000). Modeling Survival Data: Extending the Cox Model. Springer, New York.
de Wreede LC, Fiocco M, and Putter H (2010). The mstate package for estimation and prediction in non- and semi-parametric multi-state and competing risks models. Computer Methods and Programs in Biomedicine 99, 261–274.
de Wreede LC, Fiocco M, and Putter H (2011). mstate: An R Package for the Analysis of Competing Risks and Multi-State Models. Journal of Statistical Software, Volume 38, Issue 7.
# transition matrix for illness-death model tmat <- trans.illdeath() # data in wide format, for transition 1 this is dataset E1 of # Therneau & Grambsch (2000) tg <- data.frame(illt=c(1,1,6,6,8,9),ills=c(1,0,1,1,0,1), dt=c(5,1,9,7,8,12),ds=c(1,1,1,1,1,1), x1=c(1,1,1,0,0,0),x2=c(6:1)) # data in long format using msprep tglong <- msprep(time=c(NA,"illt","dt"),status=c(NA,"ills","ds"), data=tg,keep=c("x1","x2"),trans=tmat) # events events(tglong) table(tglong$status,tglong$to,tglong$from) # expanded covariates tglong <- expand.covs(tglong,c("x1","x2")) # Cox model with different covariate cx <- coxph(Surv(Tstart,Tstop,status)~x1.1+x2.2+strata(trans), data=tglong,method="breslow") summary(cx) # new data, to check whether results are the same for transition 1 as # those in appendix E.1 of Therneau & Grambsch (2000) newdata <- data.frame(trans=1:3,x1.1=c(0,0,0),x2.2=c(0,1,0),strata=1:3) msfit(cx,newdata,trans=tmat)
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.