Simulate 2-level ICC(1) values with and without level-1 correlation
ICC(1) values play an important role influencing the form of relationships among variables in nested data. This simulation allows one to create data with known ICC(1) values. Multiple variables can be created both with and without level-1 correlation.
sim.icc(gsize, ngrp, icc1,nitems=1,item.cor=FALSE)
gsize |
The simulated group size. |
ngrp |
The simulated number of groups. |
icc1 |
The simulated ICC(1) value. |
nitems |
The number of items (vectors) to simulate. |
item.cor |
An option to create level-1 correlation among items. Provided as a value between 0 and 1. If used, nitems must be larger than 1. |
GRP |
The grouping designator. |
VAR1 |
The simulated value. Multiple numbered columns if nitems>1 |
Paul Bliese paul.bliese@moore.sc.edu
Bliese, P. D. (2000). Within-group agreement, non-independence, and reliability: Implications for data aggregation and analysis. In K. J. Klein & S. W. Kozlowski (Eds.), Multilevel Theory, Research, and Methods in Organizations (pp. 349-381). San Francisco, CA: Jossey-Bass, Inc.
## Not run: set.seed(1535324) ICC.SIM<-sim.icc(gsize=10,ngrp=100,icc1=.15) ICC1(aov(VAR1~as.factor(GRP), ICC.SIM)) # 4 items with no level-1 correlation set.seed(15324) ICC.SIM<-sim.icc(gsize=10,ngrp=100,icc1=.15,nitems=4) #items with no level-1 correlation mult.icc(ICC.SIM[,2:5],ICC.SIM$GRP) with(ICC.SIM,waba(VAR1,VAR2,GRP))$Cov.Theorem #Examine CorrW # 4 items with a level-1 correlation of .30 set.seed(15324) ICC.SIM<-sim.icc(gsize=10,ngrp=100,icc1=.15,nitems=4, item.cor=.3) #.30 level-1 item correlations mult.icc(ICC.SIM[,2:5],ICC.SIM$GRP) with(ICC.SIM,waba(VAR1,VAR2,GRP))$Cov.Theorem #Examine CorrW ## End(Not run)
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.