Become an expert in R — Interactive courses, Cheat Sheets, certificates and more!
Get Started for Free

mt.sample.teststat

Permutation distribution of test statistics and raw (unadjusted) p-values


Description

These functions provide tools to investigate the permutation distribution of test statistics, raw (unadjusted) p-values, and class labels.

Usage

mt.sample.teststat(V,classlabel,test="t",fixed.seed.sampling="y",B=10000,na=.mt.naNUM,nonpara="n")
mt.sample.rawp(V,classlabel,test="t",side="abs",fixed.seed.sampling="y",B=10000,na=.mt.naNUM,nonpara="n")
mt.sample.label(classlabel,test="t",fixed.seed.sampling="y",B=10000)

Arguments

V

A numeric vector containing the data for one of the variables (genes).

classlabel

A vector of integers corresponding to observation (column) class labels. For k classes, the labels must be integers between 0 and k-1. For the blockf test option, observations may be divided into n/k blocks of k observations each. The observations are ordered by block, and within each block, they are labeled using the integers 0 to k-1.

test

A character string specifying the statistic to be used to test the null hypothesis of no association between the variables and the class labels.
If test="t", the tests are based on two-sample Welch t-statistics (unequal variances).
If test="t.equalvar", the tests are based on two-sample t-statistics with equal variance for the two samples. The square of the t-statistic is equal to an F-statistic for k=2.
If test="wilcoxon", the tests are based on standardized rank sum Wilcoxon statistics.
If test="f", the tests are based on F-statistics.
If test="pairt", the tests are based on paired t-statistics. The square of the paired t-statistic is equal to a block F-statistic for k=2.
If test="blockf", the tests are based on F-statistics which adjust for block differences (cf. two-way analysis of variance).

side

A character string specifying the type of rejection region.
If side="abs", two-tailed tests, the null hypothesis is rejected for large absolute values of the test statistic.
If side="upper", one-tailed tests, the null hypothesis is rejected for large values of the test statistic.
If side="lower", one-tailed tests, the null hypothesis is rejected for small values of the test statistic.

fixed.seed.sampling

If fixed.seed.sampling="y", a fixed seed sampling procedure is used, which may double the computing time, but will not use extra memory to store the permutations. If fixed.seed.sampling="n", permutations will be stored in memory. For the blockf test, the option n was not implemented as it requires too much memory.

B

The number of permutations. For a complete enumeration, B should be 0 (zero) or any number not less than the total number of permutations.

na

Code for missing values (the default is .mt.naNUM=--93074815.62). Entries with missing values will be ignored in the computation, i.e., test statistics will be based on a smaller sample size. This feature has not yet fully implemented.

nonpara

If nonpara="y", nonparametric test statistics are computed based on ranked data.
If nonpara="n", the original data are used.

Value

For mt.sample.teststat, a vector containing B permutation test statistics.

For mt.sample.rawp, a vector containing B permutation unadjusted p-values.

For mt.sample.label, a matrix containing B sets of permuted class labels. Each row corresponds to one permutation.

Author(s)

See Also

Examples

# Gene expression data from Golub et al. (1999)
data(golub)

mt.sample.label(golub.cl,B=10)

permt<-mt.sample.teststat(golub[1,],golub.cl,B=1000)
qqnorm(permt)
qqline(permt)

permt<-mt.sample.teststat(golub[50,],golub.cl,B=1000)
qqnorm(permt)
qqline(permt)

permp<-mt.sample.rawp(golub[1,],golub.cl,B=1000)
hist(permp)

multtest

Resampling-based multiple hypothesis testing

v2.46.0
LGPL
Authors
Katherine S. Pollard, Houston N. Gilbert, Yongchao Ge, Sandra Taylor, Sandrine Dudoit
Initial release

We don't support your browser anymore

Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.