Become an expert in R — Interactive courses, Cheat Sheets, certificates and more!
Get Started for Free

aq.plot

Adjusted Quantile Plot


Description

The function aq.plot plots the ordered squared robust Mahalanobis distances of the observations against the empirical distribution function of the $MD^2_i$. In addition the distribution function of $chisq_p$ is plotted as well as two vertical lines corresponding to the chisq-quantile specified in the argument list (default is 0.975) and the so-called adjusted quantile. Three additional graphics are created (the first showing the data, the second showing the outliers detected by the specified quantile of the $chisq_p$ distribution and the third showing these detected outliers by the adjusted quantile).

Usage

aq.plot(x, delta=qchisq(0.975, df=ncol(x)), quan=1/2, alpha=0.05)

Arguments

x

matrix or data.frame containing the data; has to be at least two-dimensional

delta

quantile of the chi-squared distribution with ncol(x) degrees of freedom. This quantile appears as cyan-colored vertical line in the plot.

quan

proportion of observations which are used for mcd estimations; has to be between 0.5 and 1, default ist 0.5

alpha

Maximum thresholding proportion (optional scalar, default: alpha = 0.05)

Details

The function aq.plot plots the ordered squared robust Mahalanobis distances of the observations against the empirical distribution function of the $MD^2_i$. The distance calculations are based on the MCD estimator.

For outlier detection two different methods are used. The first one marks observations as outliers if they exceed a certain quantile of the chi-squared distribution. The second is an adaptive procedure searching for outliers specifically in the tails of the distribution, beginning at a certain chisq-quantile (see Filzmoser et al., 2005).

The function behaves differently depending on the dimension of the data. If the data is more than two-dimensional the data are projected on the first two robust principal components.

Value

outliers

boolean vector of outliers

Author(s)

References

P. Filzmoser, R.G. Garrett, and C. Reimann. Multivariate outlier detection in exploration geochemistry. Computers & Geosciences, 31:579-587, 2005.

Examples

# create data:
set.seed(134)
x <- cbind(rnorm(80), rnorm(80), rnorm(80))
y <- cbind(rnorm(10, 5, 1), rnorm(10, 5, 1), rnorm(10, 5, 1))
z <- rbind(x,y)
# execute:
aq.plot(z, alpha=0.1)

mvoutlier

Multivariate Outlier Detection Based on Robust Methods

v2.0.9
GPL (>= 3)
Authors
Peter Filzmoser <P.Filzmoser@tuwien.ac.at> and Moritz Gschwandtner <e0125439@student.tuwien.ac.at>
Initial release
2018-02-08

We don't support your browser anymore

Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.