Become an expert in R — Interactive courses, Cheat Sheets, certificates and more!
Get Started for Free

netrank

Frequentist method to rank treatments in network


Description

Ranking treatments in frequentist network meta-analysis without resampling methods.

Usage

netrank(x, small.values = x$small.values)

## S3 method for class 'netrank'
print(
  x,
  comb.fixed = x$x$comb.fixed,
  comb.random = x$x$comb.random,
  sort = TRUE,
  digits = max(4, .Options$digits - 3),
  ...
)

Arguments

x

An object of class netmeta (netrank function) or netrank (print function).

small.values

A character string specifying whether small treatment effects indicate a beneficial ("good") or harmful ("bad") effect, can be abbreviated.

comb.fixed

A logical indicating whether to print P-scores for the fixed effects (common effects) model.

comb.random

A logical indicating whether to print P-scores for the random effects model.

sort

A logical indicating whether printout should be sorted by decreasing P-score.

digits

Minimal number of significant digits, see print.default.

...

Additional arguments passed on to print.data.frame function (used internally).

Details

Treatments are ranked based on a network meta-analysis. Ranking is performed by P-scores. P-scores are based solely on the point estimates and standard errors of the network estimates. They measure the extent of certainty that a treatment is better than another treatment, averaged over all competing treatments (Rücker and Schwarzer 2015).

The P-score of treatment i is defined as the mean of all 1 - P[j] where P[j] denotes the one-sided P-value of accepting the alternative hypothesis that treatment i is better than one of the competing treatments j. Thus, if treatment i is better than many other treatments, many of these P-values will be small and the P-score will be large. Vice versa, if treatment i is worse than most other treatments, the P-score is small.

The P-score of treatment i can be interpreted as the mean extent of certainty that treatment i is better than another treatment. This interpretation is comparable to that of the Surface Under the Cumulative RAnking curve (SUCRA) which is the rank of treatment i within the range of treatments, measured on a scale from 0 (worst) to 1 (best) (Salanti et al. 2011).

Value

An object of class netrank with corresponding print function. The object is a list containing the following components:

Pscore.fixed

A named numeric vector with P-scores for fixed effects model.

Pmatrix.fixed

Numeric matrix based on pairwise one-sided p-values for fixed effects model.

Pscore.random

A named numeric vector with P-scores for random effects model.

Pmatrix.random

Numeric matrix based on pairwise one-sided p-values of random effects model.

small.values, x

As defined above.

version

Version of R package netmeta used to create object.

Author(s)

References

Rücker G, Schwarzer G (2017): Resolve conflicting rankings of outcomes in network meta-analysis: Partial ordering of treatments. Research Synthesis Methods, 8, 526–36

Salanti G, Ades AE, Ioannidis JP (2011): Graphical methods and numerical summaries for presenting results from multiple-treatment meta-analysis: an overview and tutorial. Journal of Clinical Epidemiology, 64, 163–71

See Also

Examples

data(Senn2013)

net1 <- netmeta(TE, seTE, treat1, treat2, studlab,
                data = Senn2013, sm = "MD",
                comb.random = FALSE)

nr1 <- netrank(net1)
nr1
print(nr1, sort = FALSE)

## Not run: 
net2 <- netmeta(TE, seTE, treat1, treat2, studlab,
                data = Senn2013, sm = "MD")

nr2 <- netrank(net2)
nr2
print(nr2, sort = "fixed")
print(nr2, sort = FALSE)

## End(Not run)

netmeta

Network Meta-Analysis using Frequentist Methods

v1.4-0
GPL (>= 2)
Authors
Gerta Rücker [aut] (<https://orcid.org/0000-0002-2192-2560>), Ulrike Krahn [aut], Jochem König [aut] (<https://orcid.org/0000-0003-4683-0360>), Orestis Efthimiou [aut] (<https://orcid.org/0000-0002-0955-7572>), Guido Schwarzer [aut, cre] (<https://orcid.org/0000-0001-6214-9087>)
Initial release
2021-05-11

We don't support your browser anymore

Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.