Controlled Random Search
The Controlled Random Search (CRS) algorithm (and in particular, the CRS2 variant) with the ‘local mutation’ modification.
crs2lm(x0, fn, lower, upper, maxeval = 10000, pop.size = 10 * (length(x0) + 1), ranseed = NULL, xtol_rel = 1e-06, nl.info = FALSE, ...)
x0 |
initial point for searching the optimum. |
fn |
objective function that is to be minimized. |
lower, upper |
lower and upper bound constraints. |
maxeval |
maximum number of function evaluations. |
pop.size |
population size. |
ranseed |
prescribe seed for random number generator. |
xtol_rel |
stopping criterion for relative change reached. |
nl.info |
logical; shall the original NLopt info been shown. |
... |
additional arguments passed to the function. |
The CRS algorithms are sometimes compared to genetic algorithms, in that they start with a random population of points, and randomly evolve these points by heuristic rules. In this case, the evolution somewhat resembles a randomized Nelder-Mead algorithm.
The published results for CRS seem to be largely empirical.
List with components:
par |
the optimal solution found so far. |
value |
the function value corresponding to |
iter |
number of (outer) iterations, see |
convergence |
integer code indicating successful completion (> 0) or a possible error number (< 0). |
message |
character string produced by NLopt and giving additional information. |
The initial population size for CRS defaults to 10x(n+1)
in
n
dimensions, but this can be changed; the initial population must be
at least n+1
.
W. L. Price, “Global optimization by controlled random search,” J. Optim. Theory Appl. 40 (3), p. 333-348 (1983).
P. Kaelo and M. M. Ali, “Some variants of the controlled random search algorithm for global optimization,” J. Optim. Theory Appl. 130 (2), 253-264 (2006).
### Minimize the Hartmann6 function hartmann6 <- function(x) { n <- length(x) a <- c(1.0, 1.2, 3.0, 3.2) A <- matrix(c(10.0, 0.05, 3.0, 17.0, 3.0, 10.0, 3.5, 8.0, 17.0, 17.0, 1.7, 0.05, 3.5, 0.1, 10.0, 10.0, 1.7, 8.0, 17.0, 0.1, 8.0, 14.0, 8.0, 14.0), nrow=4, ncol=6) B <- matrix(c(.1312,.2329,.2348,.4047, .1696,.4135,.1451,.8828, .5569,.8307,.3522,.8732, .0124,.3736,.2883,.5743, .8283,.1004,.3047,.1091, .5886,.9991,.6650,.0381), nrow=4, ncol=6) fun <- 0.0 for (i in 1:4) { fun <- fun - a[i] * exp(-sum(A[i,]*(x-B[i,])^2)) } return(fun) } S <- mlsl(x0 = rep(0, 6), hartmann6, lower = rep(0,6), upper = rep(1,6), nl.info = TRUE, control=list(xtol_rel=1e-8, maxeval=1000)) ## Number of Iterations....: 4050 ## Termination conditions: maxeval: 10000 xtol_rel: 1e-06 ## Number of inequality constraints: 0 ## Number of equality constraints: 0 ## Optimal value of objective function: -3.32236801141328 ## Optimal value of controls: ## 0.2016893 0.1500105 0.4768738 0.2753326 0.3116516 0.6573004
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.