Safeguarded Newton methods for function minimization using R functions.
These version of the safeguarded Newton solves the equations with
the R function solve(). In snewton
a backtracking line search is used,
while in snewtonm
we rely on a Marquardt stabilization.
snewton(par, fn, gr, hess, control = list(trace=0, maxit=500), ...) snewtonm(par, fn, gr, hess, control = list(trace=0, maxit=500), ...)
par |
A numeric vector of starting estimates. |
fn |
A function that returns the value of the objective at the
supplied set of parameters |
gr |
A function that returns the gradient of the objective at the
supplied set of parameters |
hess |
A function to compute the Hessian matrix. This should be provided as a square, symmetric matrix. |
control |
An optional list of control settings. |
... |
Further arguments to be passed to |
Functions fn
must return a numeric value. gr
must return a vector.
hess
must return a matrix.
The control
argument is a list. See the code for snewton.R
for completeness.
Some of the values that may be important for users are:
Set 0 (default) for no output, > 0 for diagnostic output (larger values imply more output).
Set TRUE if the routine is to stop for user input (e.g., Enter) after each iteration. Default is FALSE.
A limit on the number of iterations (default 500 + 2*n where n is the number of parameters). This is the maximum number of gradient evaluations allowed.
A limit on the number of function evaluations allowed (default 3000 + 10*n).
a tolerance used for judging small gradient norm (default = 1e-07). a gradient norm smaller than (1 + abs(fmin))*eps*eps is considered small enough that a local optimum has been found, where fmin is the current estimate of the minimal function value.
To adjust the acceptable point tolerance (default 0.0001) in the test ( f <= fmin + gradproj * steplength * acctol ). This test is used to ensure progress is made at each iteration.
Step reduction factor for backtrack line search (default 0.2)
Initial stepsize default (default 1)
Additive shift for equality test (default 100.0)
A list with components:
The best set of parameters found.
The value of the objective at the best set of parameters found.
The value of the gradient at the best set of parameters found. A vector.
The value of the Hessian at the best set of parameters found. A matrix.
The number of Newton iterations used in finding the solution.
A message giving some information on the status of the solution.
Nash, J C (1979, 1990) Compact Numerical Methods for Computers: Linear Algebra and Function Minimisation, Bristol: Adam Hilger. Second Edition, Bristol: Institute of Physics Publications.
#Rosenbrock banana valley function f <- function(x){ return(100*(x[2] - x[1]*x[1])^2 + (1-x[1])^2) } #gradient gr <- function(x){ return(c(-400*x[1]*(x[2] - x[1]*x[1]) - 2*(1-x[1]), 200*(x[2] - x[1]*x[1]))) } #Hessian h <- function(x) { a11 <- 2 - 400*x[2] + 1200*x[1]*x[1]; a21 <- -400*x[1] return(matrix(c(a11, a21, a21, 200), 2, 2)) } fg <- function(x){ #function and gradient val <- f(x) attr(val,"gradient") <- gr(x) val } fgh <- function(x){ #function and gradient val <- f(x) attr(val,"gradient") <- gr(x) attr(val,"hessian") <- h(x) val } x0 <- c(-1.2, 1) sr <- snewton(x0, fn=f, gr=gr, hess=h, control=list(trace=1)) print(sr) srm <- snewtonm(x0, fn=f, gr=gr, hess=h, control=list(trace=1)) print(srm) #Example 2: Wood function # wood.f <- function(x){ res <- 100*(x[1]^2-x[2])^2+(1-x[1])^2+90*(x[3]^2-x[4])^2+(1-x[3])^2+ 10.1*((1-x[2])^2+(1-x[4])^2)+19.8*(1-x[2])*(1-x[4]) return(res) } #gradient: wood.g <- function(x){ g1 <- 400*x[1]^3-400*x[1]*x[2]+2*x[1]-2 g2 <- -200*x[1]^2+220.2*x[2]+19.8*x[4]-40 g3 <- 360*x[3]^3-360*x[3]*x[4]+2*x[3]-2 g4 <- -180*x[3]^2+200.2*x[4]+19.8*x[2]-40 return(c(g1,g2,g3,g4)) } #hessian: wood.h <- function(x){ h11 <- 1200*x[1]^2-400*x[2]+2; h12 <- -400*x[1]; h13 <- h14 <- 0 h22 <- 220.2; h23 <- 0; h24 <- 19.8 h33 <- 1080*x[3]^2-360*x[4]+2; h34 <- -360*x[3] h44 <- 200.2 H <- matrix(c(h11,h12,h13,h14,h12,h22,h23,h24, h13,h23,h33,h34,h14,h24,h34,h44),ncol=4) return(H) } ################################################# w0 <- c(-3, -1, -3, -1) wd <- snewton(w0, fn=wood.f, gr=wood.g, hess=wood.h, control=list(trace=1)) print(wd) wdm <- snewtonm(w0, fn=wood.f, gr=wood.g, hess=wood.h, control=list(trace=1)) print(wdm)
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.