A function giving a table of true versus predicted values, from a nearest shrunken centroid fit from survival data.
A function giving a table of true versus predicted values, from a nearest shrunken centroid fit from survival data.
pamr.test.errors.surv.compute(proby, yhat)
proby |
Survival class probabilities, from pamr.surv.to.class2 |
yhat |
Estimated class labels, from pamr.predict |
pamr.test.errors.surv.compute
computes the erros between the
true 'soft" class labels proby and the estimated ones "yhat"
Trevor Hastie, Robert Tibshirani, Balasubramanian Narasimhan, and Gilbert Chu
gendata<-function(n=100, p=2000){ tim <- 3*abs(rnorm(n)) u<-runif(n,min(tim),max(tim)) y<-pmin(tim,u) ic<-1*(tim<u) m <- median(tim) x<-matrix(rnorm(p*n),ncol=n) x[1:100, tim>m] <- x[1:100, tim>m]+3 return(list(x=x,y=y,ic=ic)) } # generate training data; 2000 genes, 100 samples junk<-gendata(n=100) y<-junk$y ic<-junk$ic x<-junk$x d <- list(x=x,survival.time=y, censoring.status=ic, geneid=as.character(1:nrow(x)), genenames=paste("g",as.character(1:nrow(x)),sep= "")) # train model a3<- pamr.train(d, ngroup.survival=2) # generate test data junkk<- gendata(n=500) dd <- list(x=junkk$x, survival.time=junkk$y, censoring.status=junkk$ic) # compute soft labels proby <- pamr.surv.to.class2(dd$survival.time, dd$censoring.status, n.class=a3$ngroup.survival)$prob # make class predictions for test data yhat <- pamr.predict(a3,dd$x, threshold=1.0) # compute test errors pamr.test.errors.surv.compute(proby, yhat)
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.