Confidence Intervals (CI)
Compute confidence intervals (CI) for frequentist models.
## Default S3 method: ci(x, ci = 0.95, dof = Inf, method = NULL, ...) ## S3 method for class 'glm' ci(x, ci = 0.95, method = c("profile", "wald", "robust"), ...) ## S3 method for class 'DirichletRegModel' ci(x, ci = 0.95, component = c("all", "conditional", "precision"), ...) ## S3 method for class 'betareg' ci(x, ci = 0.95, component = c("all", "conditional", "precision"), ...) ## S3 method for class 'glmmTMB' ci( x, ci = 0.95, component = c("all", "conditional", "zi", "zero_inflated", "dispersion"), method = c("wald", "ml1", "betwithin", "robust", "profile", "uniroot"), verbose = TRUE, ... ) ## S3 method for class 'merMod' ci( x, ci = 0.95, method = c("wald", "ml1", "betwithin", "satterthwaite", "kenward", "boot", "profile"), ... ) ## S3 method for class 'polr' ci(x, ci = 0.95, method = c("profile", "wald", "robust"), ...) ## S3 method for class 'poissonmfx' ci( x, ci = 0.95, component = c("all", "conditional", "marginal"), method = NULL, ... ) ## S3 method for class 'betamfx' ci( x, ci = 0.95, component = c("all", "conditional", "precision", "marginal"), method = NULL, ... ) ## S3 method for class 'MixMod' ci( x, ci = 0.95, component = c("all", "conditional", "zi", "zero_inflated"), verbose = TRUE, ... ) ## S3 method for class 'mixor' ci(x, ci = 0.95, effects = "all", ...) ## S3 method for class 'lme' ci(x, ci = 0.95, method = c("wald", "betwithin", "ml1", "satterthwaite"), ...) ## S3 method for class 'clm2' ci(x, ci = 0.95, component = c("all", "conditional", "scale"), ...) ## S3 method for class 'zeroinfl' ci( x, ci = 0.95, component = c("all", "conditional", "zi", "zero_inflated", "dispersion"), method = c("wald", "ml1", "betwithin", "robust", "profile", "uniroot"), verbose = TRUE, ... ) ## S3 method for class 'hurdle' ci( x, ci = 0.95, component = c("all", "conditional", "zi", "zero_inflated", "dispersion"), method = c("wald", "ml1", "betwithin", "robust", "profile", "uniroot"), verbose = TRUE, ... ) ## S3 method for class 'HLfit' ci( x, ci = 0.95, method = c("wald", "ml1", "betwithin", "profile", "boot"), iterations = 100, ... )
x |
A statistical model. |
ci |
Confidence Interval (CI) level. Default to 0.95 (95%). |
dof |
Degrees of Freedom. If not specified, for |
method |
For mixed models, can be |
... |
Arguments passed down to |
component |
Should all parameters, parameters for the conditional model,
or for the zero-inflated part of the model be returned? Applies to models
with zero-inflated component. |
verbose |
Toggle warnings and messages. |
effects |
Should standard errors for fixed effects or random effects be returned? Only applies to mixed models. May be abbreviated. When standard errors for random effects are requested, for each grouping factor a list of standard errors (per group level) for random intercepts and slopes is returned. |
iterations |
The number of draws to simulate/bootstrap. |
A data frame containing the CI bounds.
ci_robust()
resp. ci(method = "robust")
rely on the sandwich or clubSandwich package (the latter if
vcov_estimation = "CR"
for cluster-robust standard errors) and will
thus only work for those models supported by those packages.
library(parameters) if (require("glmmTMB")) { model <- glmmTMB( count ~ spp + mined + (1 | site), ziformula = ~mined, family = poisson(), data = Salamanders ) ci(model) ci(model, component = "zi") }
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.