Parameters from (General) Linear Models
Extract and compute indices and measures to describe parameters of (general) linear models (GLMs).
## Default S3 method: model_parameters( model, ci = 0.95, bootstrap = FALSE, iterations = 1000, standardize = NULL, exponentiate = FALSE, robust = FALSE, p_adjust = NULL, summary = FALSE, verbose = TRUE, ... ) ## S3 method for class 'glm' model_parameters( model, ci = 0.95, df_method = "profile", bootstrap = FALSE, iterations = 1000, standardize = NULL, exponentiate = FALSE, robust = FALSE, p_adjust = NULL, verbose = TRUE, ... ) ## S3 method for class 'logitor' model_parameters( model, ci = 0.95, bootstrap = FALSE, iterations = 1000, standardize = NULL, exponentiate = TRUE, robust = FALSE, p_adjust = NULL, verbose = TRUE, ... ) ## S3 method for class 'poissonmfx' model_parameters( model, ci = 0.95, bootstrap = FALSE, iterations = 1000, component = c("all", "conditional", "marginal"), standardize = NULL, exponentiate = FALSE, robust = FALSE, p_adjust = NULL, verbose = TRUE, ... ) ## S3 method for class 'betamfx' model_parameters( model, ci = 0.95, bootstrap = FALSE, iterations = 1000, component = c("all", "conditional", "precision", "marginal"), standardize = NULL, exponentiate = FALSE, robust = FALSE, p_adjust = NULL, verbose = TRUE, ... )
model |
Model object. |
ci |
Confidence Interval (CI) level. Default to 0.95 (95%). |
bootstrap |
Should estimates be based on bootstrapped model? If
|
iterations |
The number of bootstrap replicates. This only apply in the case of bootstrapped frequentist models. |
standardize |
The method used for standardizing the parameters. Can be
|
exponentiate |
Logical, indicating whether or not to exponentiate the
the coefficients (and related confidence intervals). This is typical for,
say, logistic regressions, or more generally speaking: for models with log
or logit link. Note: standard errors are also transformed (by
multiplying the standard errors with the exponentiated coefficients), to
mimic behaviour of other software packages, such as Stata. For
|
robust |
Logical, if |
p_adjust |
Character vector, if not |
summary |
Logical, if |
verbose |
Toggle warnings and messages. |
... |
Arguments passed to or from other methods. For instance, when
|
df_method |
Method for computing degrees of freedom for confidence
intervals (CI). Only applies to models of class |
component |
Model component for which parameters should be shown. May be
one of |
A data frame of indices related to the model's parameters.
standardize_names()
to
rename columns into a consistent, standardized naming scheme.
library(parameters) model <- lm(mpg ~ wt + cyl, data = mtcars) model_parameters(model) # bootstrapped parameters model_parameters(model, bootstrap = TRUE) # standardized parameters model_parameters(model, standardize = "refit") # different p-value style in output model_parameters(model, p_digits = 5) model_parameters(model, digits = 3, ci_digits = 4, p_digits = "scientific") # logistic regression model model <- glm(vs ~ wt + cyl, data = mtcars, family = "binomial") model_parameters(model) # show odds ratio / exponentiated coefficients model_parameters(model, exponentiate = TRUE)
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.