Parameters from hypothesis tests
Parameters of h-tests (correlations, t-tests, chi-squared, ...).
## S3 method for class 'htest' model_parameters( model, cramers_v = NULL, phi = NULL, standardized_d = NULL, hedges_g = NULL, omega_squared = NULL, eta_squared = NULL, epsilon_squared = NULL, cohens_g = NULL, rank_biserial = NULL, rank_epsilon_squared = NULL, kendalls_w = NULL, ci = 0.95, bootstrap = FALSE, verbose = TRUE, ... ) ## S3 method for class 'pairwise.htest' model_parameters(model, verbose = TRUE, ...)
model |
Object of class |
cramers_v, phi |
Compute Cramer's V or phi as index of effect size.
Can be |
standardized_d |
If |
hedges_g |
If |
omega_squared, eta_squared, epsilon_squared |
Logical, if |
cohens_g |
If |
rank_biserial |
If |
rank_epsilon_squared |
If |
kendalls_w |
If |
ci |
Level of confidence intervals for effect size statistic. Currently
only applies to objects from |
bootstrap |
Should estimates be bootstrapped? |
verbose |
Toggle warnings and messages. |
... |
Arguments passed to or from other methods. |
A data frame of indices related to the model's parameters.
model <- cor.test(mtcars$mpg, mtcars$cyl, method = "pearson") model_parameters(model) model <- t.test(iris$Sepal.Width, iris$Sepal.Length) model_parameters(model) model <- t.test(mtcars$mpg ~ mtcars$vs) model_parameters(model) model <- t.test(iris$Sepal.Width, mu = 1) model_parameters(model) data(airquality) airquality$Month <- factor(airquality$Month, labels = month.abb[5:9]) model <- pairwise.t.test(airquality$Ozone, airquality$Month) model_parameters(model) smokers <- c(83, 90, 129, 70) patients <- c(86, 93, 136, 82) model <- pairwise.prop.test(smokers, patients) model_parameters(model)
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.