Parameters from Mixed Models
Parameters from (linear) mixed models.
## S3 method for class 'cpglmm' model_parameters( model, ci = 0.95, bootstrap = FALSE, iterations = 1000, standardize = NULL, effects = "fixed", group_level = FALSE, exponentiate = FALSE, details = FALSE, df_method = NULL, p_adjust = NULL, verbose = TRUE, ... ) ## S3 method for class 'glmmTMB' model_parameters( model, ci = 0.95, bootstrap = FALSE, iterations = 1000, effects = "fixed", component = "all", group_level = FALSE, standardize = NULL, exponentiate = FALSE, df_method = NULL, details = FALSE, p_adjust = NULL, wb_component = TRUE, summary = FALSE, verbose = TRUE, ... ) ## S3 method for class 'merMod' model_parameters( model, ci = 0.95, bootstrap = FALSE, df_method = "wald", iterations = 1000, standardize = NULL, effects = "fixed", group_level = FALSE, exponentiate = FALSE, robust = FALSE, details = FALSE, p_adjust = NULL, wb_component = TRUE, summary = FALSE, verbose = TRUE, ... ) ## S3 method for class 'mixor' model_parameters( model, ci = 0.95, effects = "fixed", bootstrap = FALSE, iterations = 1000, standardize = NULL, exponentiate = FALSE, details = FALSE, verbose = TRUE, ... ) ## S3 method for class 'clmm' model_parameters( model, ci = 0.95, bootstrap = FALSE, iterations = 1000, standardize = NULL, effects = "fixed", group_level = FALSE, exponentiate = FALSE, details = FALSE, df_method = NULL, p_adjust = NULL, verbose = TRUE, ... )
model |
A mixed model. |
ci |
Confidence Interval (CI) level. Default to 0.95 (95%). |
bootstrap |
Should estimates be based on bootstrapped model? If
|
iterations |
The number of draws to simulate/bootstrap. |
standardize |
The method used for standardizing the parameters. Can be
|
effects |
Should parameters for fixed effects ( |
group_level |
Logical, for multilevel models (i.e. models with random
effects) and when |
exponentiate |
Logical, indicating whether or not to exponentiate the
the coefficients (and related confidence intervals). This is typical for,
say, logistic regressions, or more generally speaking: for models with log
or logit link. Note: standard errors are also transformed (by
multiplying the standard errors with the exponentiated coefficients), to
mimic behaviour of other software packages, such as Stata. For
|
details |
Logical, if |
df_method |
Method for computing degrees of freedom for p values,
standard errors and confidence intervals (CI). May be |
p_adjust |
Character vector, if not |
verbose |
Toggle warnings and messages. |
... |
Arguments passed to or from other methods. |
component |
Should all parameters, parameters for the conditional model,
or for the zero-inflated part of the model be returned? Applies to models
with zero-inflated component. |
wb_component |
Logical, if |
summary |
Logical, if |
robust |
Logical, if |
A data frame of indices related to the model's parameters.
There is also a plot()
-method implemented in the see-package.
standardize_names()
to
rename columns into a consistent, standardized naming scheme.
library(parameters) if (require("lme4")) { data(mtcars) model <- lmer(mpg ~ wt + (1 | gear), data = mtcars) model_parameters(model) } if (require("glmmTMB")) { data(Salamanders) model <- glmmTMB( count ~ spp + mined + (1 | site), ziformula = ~mined, family = poisson(), data = Salamanders ) model_parameters(model, details = TRUE) } if (require("lme4")) { model <- lmer(mpg ~ wt + (1 | gear), data = mtcars) model_parameters(model, bootstrap = TRUE, iterations = 50) }
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.