Parameters from Meta-Analysis
Extract and compute indices and measures to describe parameters of meta-analysis models.
## S3 method for class 'rma' model_parameters( model, ci = 0.95, bootstrap = FALSE, iterations = 1000, standardize = NULL, exponentiate = FALSE, include_studies = TRUE, verbose = TRUE, ... )
model |
Model object. |
ci |
Confidence Interval (CI) level. Default to 0.95 (95%). |
bootstrap |
Should estimates be based on bootstrapped model? If
|
iterations |
The number of bootstrap replicates. This only apply in the case of bootstrapped frequentist models. |
standardize |
The method used for standardizing the parameters. Can be
|
exponentiate |
Logical, indicating whether or not to exponentiate the
the coefficients (and related confidence intervals). This is typical for,
say, logistic regressions, or more generally speaking: for models with log
or logit link. Note: standard errors are also transformed (by
multiplying the standard errors with the exponentiated coefficients), to
mimic behaviour of other software packages, such as Stata. For
|
include_studies |
Logical, if |
verbose |
Toggle warnings and messages. |
... |
Arguments passed to or from other methods. For instance, when
|
A data frame of indices related to the model's parameters.
library(parameters) mydat <<- data.frame( effectsize = c(-0.393, 0.675, 0.282, -1.398), stderr = c(0.317, 0.317, 0.13, 0.36) ) if (require("metafor", quietly = TRUE)) { model <- rma(yi = effectsize, sei = stderr, method = "REML", data = mydat) model_parameters(model) } ## Not run: # with subgroups if (require("metafor", quietly = TRUE)) { data(dat.bcg) dat <- escalc( measure = "RR", ai = tpos, bi = tneg, ci = cpos, di = cneg, data = dat.bcg ) dat$alloc <- ifelse(dat$alloc == "random", "random", "other") model <- rma(yi, vi, mods = ~alloc, data = dat, digits = 3, slab = author) model_parameters(model) } if (require("metaBMA", quietly = TRUE)) { data(towels) m <- meta_random(logOR, SE, study, data = towels) model_parameters(m) } ## End(Not run)
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.