p-values for Marginal Effects Models
This function attempts to return, or compute, p-values of marginal effects models from package mfx.
## S3 method for class 'poissonmfx' p_value(model, component = c("all", "conditional", "marginal"), ...) ## S3 method for class 'betaor' p_value(model, component = c("all", "conditional", "precision"), ...) ## S3 method for class 'betamfx' p_value( model, component = c("all", "conditional", "precision", "marginal"), ... )
model |
A statistical model. |
component |
Should all parameters, parameters for the conditional model, precision-component or marginal effects be returned? |
... |
Currently not used. |
A data frame with at least two columns: the parameter names and the p-values. Depending on the model, may also include columns for model components etc.
if (require("mfx", quietly = TRUE)) { set.seed(12345) n <- 1000 x <- rnorm(n) y <- rnegbin(n, mu = exp(1 + 0.5 * x), theta = 0.5) d <- data.frame(y, x) model <- poissonmfx(y ~ x, data = d) p_value(model) p_value(model, component = "marginal") }
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.