Standard Errors
standard_error()
attempts to return standard errors of model
parameters, while standard_error_robust()
attempts to return robust
standard errors.
standard_error(model, ...) ## Default S3 method: standard_error(model, method = NULL, verbose = TRUE, ...) ## S3 method for class 'DirichletRegModel' standard_error(model, component = c("all", "conditional", "precision"), ...) ## S3 method for class 'averaging' standard_error(model, component = c("conditional", "full"), ...) ## S3 method for class 'factor' standard_error(model, force = FALSE, verbose = TRUE, ...) ## S3 method for class 'betareg' standard_error(model, component = c("all", "conditional", "precision"), ...) ## S3 method for class 'glmmTMB' standard_error( model, effects = c("fixed", "random"), component = c("all", "conditional", "zi", "zero_inflated", "dispersion"), verbose = TRUE, ... ) ## S3 method for class 'merMod' standard_error(model, effects = c("fixed", "random"), method = NULL, ...) ## S3 method for class 'poissonmfx' standard_error(model, component = c("all", "conditional", "marginal"), ...) ## S3 method for class 'betamfx' standard_error( model, component = c("all", "conditional", "precision", "marginal"), ... ) ## S3 method for class 'MixMod' standard_error( model, effects = c("fixed", "random"), component = c("all", "conditional", "zi", "zero_inflated"), verbose = TRUE, ... ) ## S3 method for class 'mixor' standard_error(model, effects = "all", ...) ## S3 method for class 'clm2' standard_error(model, component = c("all", "conditional", "scale"), ...) ## S3 method for class 'zeroinfl' standard_error( model, component = c("all", "conditional", "zi", "zero_inflated"), method = NULL, verbose = TRUE, ... ) ## S3 method for class 'coxph' standard_error(model, method = NULL, ...)
model |
A model. |
... |
Arguments passed to or from other methods. For
|
method |
If |
verbose |
Toggle warnings and messages. |
component |
Should all parameters, parameters for the conditional model,
or for the zero-inflated part of the model be returned? Applies to models
with zero-inflated component. |
force |
Logical, if |
effects |
Should standard errors for fixed effects or random effects be returned? Only applies to mixed models. May be abbreviated. When standard errors for random effects are requested, for each grouping factor a list of standard errors (per group level) for random intercepts and slopes is returned. |
A data frame with at least two columns: the parameter names and the standard errors. Depending on the model, may also include columns for model components etc.
For Bayesian models (from rstanarm or brms), the standard error is the SD of the posterior samples.
model <- lm(Petal.Length ~ Sepal.Length * Species, data = iris) standard_error(model)
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.