Class "RandomForest"
A class for representing random forest ensembles.
Objects can be created by calls of the form new("RandomForest", ...)
.
ensemble
:Object of class "list"
, each element
being an object of class "BinaryTree"
.
data
: an object of class "ModelEnv"
.
initweights
:a vector of initial weights.
weights
:a list of weights defining the sub-samples.
where
:a matrix of integers vectors of length n (number of observations in the learning sample) giving the number of the terminal node the corresponding observations is element of (in each tree).
data
: an object of class "ModelEnv"
.
responses
: an object of class "VariableFrame"
storing the values of the response variable(s).
cond_distr_response
:a function computing the conditional distribution of the response.
predict_response
:a function for computing predictions.
prediction_weights
:a function for extracting weights from terminal nodes.
get_where
:a function for determining the number of terminal nodes observations fall into.
update
:a function for updating weights.
signature(object = "RandomForest")
: ...
signature(object = "RandomForest")
: ...
signature(object = "RandomForest")
: ...
set.seed(290875) ### honest (i.e., out-of-bag) cross-classification of ### true vs. predicted classes data("mammoexp", package = "TH.data") table(mammoexp$ME, predict(cforest(ME ~ ., data = mammoexp, control = cforest_unbiased(ntree = 50)), OOB = TRUE))
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.