Become an expert in R — Interactive courses, Cheat Sheets, certificates and more!
Get Started for Free

plot.mob

Visualization of MOB Trees


Description

plot method for mob objects with extended facilities for plugging in panel functions.

Usage

## S3 method for class 'mob'
plot(x, terminal_panel = node_bivplot, tnex = NULL, ...)

Arguments

x

an object of class mob.

terminal_panel

a panel function or panel-generating function of class "grapcon_generator". See plot.BinaryTree for more details.

tnex

a numeric value giving the terminal node extension in relation to the inner nodes.

...

further arguments passed to plot.BinaryTree.

Details

This plot method for mob objects simply calls the plot.BinaryTree method, setting a different terminal_panel function by default (node_bivplot) and tnex value.

See Also

Examples

set.seed(290875)

if(require("mlbench")) {

## recursive partitioning of a linear regression model
## load data
data("BostonHousing", package = "mlbench")
## and transform variables appropriately (for a linear regression)
BostonHousing$lstat <- log(BostonHousing$lstat)
BostonHousing$rm <- BostonHousing$rm^2
## as well as partitioning variables (for fluctuation testing)
BostonHousing$chas <- factor(BostonHousing$chas, levels = 0:1, 
                             labels = c("no", "yes"))
BostonHousing$rad <- factor(BostonHousing$rad, ordered = TRUE)

## partition the linear regression model medv ~ lstat + rm
## with respect to all remaining variables:
fm <- mob(medv ~ lstat + rm | zn + indus + chas + nox + age + dis + 
                              rad + tax + crim + b + ptratio,
  control = mob_control(minsplit = 40), data = BostonHousing, 
  model = linearModel)

## visualize medv ~ lstat and medv ~ rm
plot(fm)

## visualize only one of the two regressors
plot(fm, tp_args = list(which = "lstat"), tnex = 2)
plot(fm, tp_args = list(which = 2), tnex = 2)

## omit fitted mean lines
plot(fm, tp_args = list(fitmean = FALSE))

## mixed numerical and categorical regressors 
fm2 <- mob(medv ~ lstat + rm + chas | zn + indus + nox + age + 
                                      dis + rad,
  control = mob_control(minsplit = 100), data = BostonHousing, 
  model = linearModel)
plot(fm2)

## recursive partitioning of a logistic regression model
data("PimaIndiansDiabetes", package = "mlbench")
fmPID <- mob(diabetes ~ glucose | pregnant + pressure + triceps + 
                                  insulin + mass + pedigree + age,
  data = PimaIndiansDiabetes, model = glinearModel, 
  family = binomial())
## default plot: spinograms with breaks from five point summary
plot(fmPID)
## use the breaks from hist() instead
plot(fmPID, tp_args = list(fivenum = FALSE))
## user-defined breaks
plot(fmPID, tp_args = list(breaks = 0:4 * 50))
## CD plots instead of spinograms
plot(fmPID, tp_args = list(cdplot = TRUE))
## different smoothing bandwidth
plot(fmPID, tp_args = list(cdplot = TRUE, bw = 15))

}

party

A Laboratory for Recursive Partytioning

v1.3-10
GPL-2
Authors
Torsten Hothorn [aut, cre] (<https://orcid.org/0000-0001-8301-0471>), Kurt Hornik [aut], Carolin Strobl [aut], Achim Zeileis [aut] (<https://orcid.org/0000-0003-0918-3766>)
Initial release
2022-04-25

We don't support your browser anymore

Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.