Gleissberg distribution probability
The Gleissberg distribution gives the probability to have k extrema in a series of n observations. This distribution is used in the turnogram to determine if monotony indices are significant (see turnogram()
)
pgleissberg(n, k, lower.tail=TRUE, two.tailed=FALSE)
n |
the number of observations in the series |
k |
the number of extrema in the series, as calculated by |
lower.tail |
if |
two.tailed |
if |
a value giving the probability to have k
extrema in a series of n
observations
The Gleissberg distribution is asymptotically normal. For n
> 50, the distribution is approximated by a Gaussian curve. For lower n
values, the exact probability is returned (using data in the variable .gleissberg.table
Frédéric Ibanez (ibanez@obs-vlfr.fr), Philippe Grosjean (phgrosjean@sciviews.org)
Dallot, S. & M. Etienne, 1990. Une méthode non paramétrique d'analyse des séries en océanographie biologique: les tournogrammes. Biométrie et océanographie - Société de biométrie, 6, Lille, 26-28 mai 1986. IFREMER, Actes de colloques, 10:13-31.
Johnson, N.L. & Kotz, S., 1969. Discrete distributions. J. Wiley & sons, New York, 328 pp.
# Until n=50, the exact probability is returned pgleissberg(20, 10, lower.tail=TRUE, two.tailed=FALSE) # For higher n values, it is approximated by a normal distribution pgleissberg(60, 33, lower.tail=TRUE, two.tailed=FALSE)
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.