Become an expert in R — Interactive courses, Cheat Sheets, certificates and more!
Get Started for Free

plot.pcaRes

Plot diagnostics (screeplot)


Description

Plot the computed diagnostics of PCA model to get an idea of their importance. Note though that the standard screeplot shows the standard deviations for the PCs this method shows the R2 values which empirically shows the importance of the P's and is thus applicable for any PCA method rather than just SVD based PCA.

Usage

## S3 method for class 'pcaRes'
plot(x, y = NULL, main = deparse(substitute(object)),
  col = gray(c(0.9, 0.5)), ...)

Arguments

x

pcaRes The pcaRes object.

y

not used

main

title of the plot

col

Colors of the bars

...

further arguments to barplot

Details

If cross-validation was done for the PCA the plot will also show the CV based statistics. A common rule-of-thumb for determining the optimal number of PCs is the PC where the CV diagnostic is at its maximum but not very far from R^2.

Value

None, used for side effect.

Author(s)

Henning Redestig

See Also

Examples

data(metaboliteData)
pc <- pca(t(metaboliteData), nPcs=5, cv="q2", scale="uv")
plot(pc)

pcaMethods

A collection of PCA methods

v1.82.0
GPL (>= 3)
Authors
Wolfram Stacklies, Henning Redestig, Kevin Wright
Initial release

We don't support your browser anymore

Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.