Robust Covariance Matrix Estimation
computes the robust covariance matrix using the PCAgrid
and
PCAproj
functions.
covPCAproj(x, control) covPCAgrid(x, control)
cov |
the actual covariance matrix estimated from |
center |
the center of the data |
method |
a string describing the method that was used to calculate the covariance matrix estimation |
Heinrich Fritz, Peter Filzmoser <P.Filzmoser@tuwien.ac.at>
C. Croux, P. Filzmoser, M. Oliveira, (2007). Algorithms for Projection-Pursuit Robust Principal Component Analysis, Chemometrics and Intelligent Laboratory Systems, Vol. 87, pp. 218-225.
# multivariate data with outliers library(mvtnorm) x <- rbind(rmvnorm(200, rep(0, 6), diag(c(5, rep(1,5)))), rmvnorm( 15, c(0, rep(20, 5)), diag(rep(1, 6)))) covPCAproj(x) # compare with classical covariance matrix: cov(x)
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.