Plotting prediction error curves
Plotting prediction error curves for one or more prediction models.
## S3 method for class 'pec' plot( x, what, models, xlim = c(x$start, x$minmaxtime), ylim = c(0, 0.3), xlab = "Time", ylab, axes = TRUE, col, lty, lwd, type, smooth = FALSE, add.refline = FALSE, add = FALSE, legend = ifelse(add, FALSE, TRUE), special = FALSE, ... )
x |
Object of class |
what |
The name of the entry in |
models |
Specifies models in |
xlim |
Plotting range on the x-axis. |
ylim |
Plotting range on the y-axis. |
xlab |
Label given to the x-axis. |
ylab |
Label given to the y-axis. |
axes |
Logical. If |
col |
Vector of colors given to the curves of |
lty |
Vector of lty's given to the curves of |
lwd |
Vector of lwd's given to the curves of |
type |
Plotting type: either |
smooth |
Logical. If |
add.refline |
Logical. If |
add |
Logical. If |
legend |
if TRUE a legend is plotted by calling the function legend.
Optional arguments of the function |
special |
Logical. If |
... |
Extra arguments that are passed to |
From version 2.0.1 on the arguments legend.text, legend.args, lines.type,
lwd.lines, specials are obsolete and only available for backward
compatibility. Instead arguments for the invoked functions legend
,
axis
, Special
are simply specified as legend.lty=2
. The
specification is not case sensitive, thus Legend.lty=2
or
LEGEND.lty=2
will have the same effect. The function axis
is
called twice, and arguments of the form axis1.labels
, axis1.at
are used for the time axis whereas axis2.pos
, axis1.labels
,
etc. are used for the y-axis.
These arguments are processed via ...{}
of plot.pec
and
inside by using the function resolveSmartArgs
. Documentation of
these arguments can be found in the help pages of the corresponding
functions.
The (invisible) object.
Ulla B. Mogensen ulmo@biostat.ku.dk, Thomas A. Gerds tag@biostat.ku.dk
# simulate data # with a survival response and two predictors library(prodlim) library(survival) set.seed(280180) dat <- SimSurv(100) # fit some candidate Cox models and # compute the Kaplan-Meier estimate Models <- list("Kaplan.Meier"=survfit(Surv(time,status)~1,data=dat), "Cox.X1"=coxph(Surv(time,status)~X1,data=dat,x=TRUE,y=TRUE), "Cox.X2"=coxph(Surv(time,status)~X2,data=dat,x=TRUE,y=TRUE), "Cox.X1.X2"=coxph(Surv(time,status)~X1+X2,data=dat,x=TRUE,y=TRUE)) Models <- list("Cox.X1"=coxph(Surv(time,status)~X1,data=dat,x=TRUE,y=TRUE), "Cox.X2"=coxph(Surv(time,status)~X2,data=dat,x=TRUE,y=TRUE), "Cox.X1.X2"=coxph(Surv(time,status)~X1+X2,data=dat,x=TRUE,y=TRUE)) # compute the .632+ estimate of the generalization error set.seed(17100) PredError.632plus <- pec(object=Models, formula=Surv(time,status)~X1+X2, data=dat, exact=TRUE, cens.model="marginal", splitMethod="boot632plus", B=5, keep.matrix=TRUE, verbose=TRUE) # plot the .632+ estimates of the generalization error plot(PredError.632plus,xlim=c(0,30)) # plot the bootstrapped curves, .632+ estimates of the generalization error # and Apparent error for the Cox model 'Cox.X1' with the 'Cox.X2' model # as benchmark plot(PredError.632plus, xlim=c(0,30), models="Cox.X1", special=TRUE, special.bench="Cox.X2", special.benchcol=2, special.addprederr="AppErr")
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.