Become an expert in R — Interactive courses, Cheat Sheets, certificates and more!
Get Started for Free

performance_mse

Mean Square Error of Linear Models


Description

Compute mean square error of linear models.

Usage

performance_mse(model, ...)

mse(model, ...)

Arguments

model

A model.

...

Arguments passed to or from other methods.

Details

The mean square error is the mean of the sum of squared residuals, i.e. it measures the average of the squares of the errors. Less technically speaking, the mean square error can be considered as the variance of the residuals, i.e. the variation in the outcome the model doesn't explain. Lower values (closer to zero) indicate better fit.

Value

Numeric, the mean square error of model.

Examples

data(mtcars)
m <- lm(mpg ~ hp + gear, data = mtcars)
performance_mse(m)

performance

Assessment of Regression Models Performance

v0.7.1
GPL-3
Authors
Daniel Lüdecke [aut, cre] (<https://orcid.org/0000-0002-8895-3206>), Dominique Makowski [aut, ctb] (<https://orcid.org/0000-0001-5375-9967>), Mattan S. Ben-Shachar [aut, ctb] (<https://orcid.org/0000-0002-4287-4801>), Indrajeet Patil [aut, ctb] (<https://orcid.org/0000-0003-1995-6531>), Philip Waggoner [aut, ctb] (<https://orcid.org/0000-0002-7825-7573>), Vincent Arel-Bundock [ctb] (<https://orcid.org/0000-0003-2042-7063>)
Initial release

We don't support your browser anymore

Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.