Simple ROC curve
This function calculates a simple ROC curves of x/y coordinates based on response and predictions of a binomial model.
performance_roc(x, ..., predictions, new_data)
x |
A numeric vector, representing the outcome (0/1), or a model with binomial outcome. |
... |
One or more models with binomial outcome. In this case,
|
predictions |
If |
new_data |
If |
A data frame with three columns, the x/y-coordinate pairs for the ROC
curve (Sensitivity
and Specificity
), and a column with the
model name.
There is also a plot()
-method implemented in the see-package.
library(bayestestR) data(iris) set.seed(123) iris$y <- rbinom(nrow(iris), size = 1, .3) folds <- sample(nrow(iris), size = nrow(iris) / 8, replace = FALSE) test_data <- iris[folds, ] train_data <- iris[-folds, ] model <- glm(y ~ Sepal.Length + Sepal.Width, data = train_data, family = "binomial") as.data.frame(performance_roc(model, new_data = test_data)) roc <- performance_roc(model, new_data = test_data) area_under_curve(roc$Specificity, roc$Sensitivity) m1 <- glm(y ~ Sepal.Length + Sepal.Width, data = iris, family = "binomial") m2 <- glm(y ~ Sepal.Length + Petal.Width, data = iris, family = "binomial") m3 <- glm(y ~ Sepal.Length + Species, data = iris, family = "binomial") performance_roc(m1, m2, m3) # if you have \code{see} package installed, you can also plot comparison of # ROC curves for different models # if (require("see")) plot(performance_roc(m1, m2, m3))
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.