Add trace(s) to a plotly visualization
Add trace(s) to a plotly visualization
add_trace(p, ..., data = NULL, inherit = TRUE) add_markers(p, x = NULL, y = NULL, z = NULL, ..., data = NULL, inherit = TRUE) add_text( p, x = NULL, y = NULL, z = NULL, text = NULL, ..., data = NULL, inherit = TRUE ) add_paths(p, x = NULL, y = NULL, z = NULL, ..., data = NULL, inherit = TRUE) add_lines(p, x = NULL, y = NULL, z = NULL, ..., data = NULL, inherit = TRUE) add_segments( p, x = NULL, y = NULL, xend = NULL, yend = NULL, ..., data = NULL, inherit = TRUE ) add_polygons(p, x = NULL, y = NULL, ..., data = NULL, inherit = TRUE) add_sf(p, ..., x = ~x, y = ~y, data = NULL, inherit = TRUE) add_table(p, ..., rownames = TRUE, data = NULL, inherit = TRUE) add_ribbons( p, x = NULL, ymin = NULL, ymax = NULL, ..., data = NULL, inherit = TRUE ) add_image(p, z = NULL, colormodel = NULL, ..., data = NULL, inherit = TRUE) add_area(p, r = NULL, theta = NULL, t = NULL, ..., data = NULL, inherit = TRUE) add_pie(p, values = NULL, labels = NULL, ..., data = NULL, inherit = TRUE) add_bars(p, x = NULL, y = NULL, ..., data = NULL, inherit = TRUE) add_histogram(p, x = NULL, y = NULL, ..., data = NULL, inherit = TRUE) add_histogram2d( p, x = NULL, y = NULL, z = NULL, ..., data = NULL, inherit = TRUE ) add_histogram2dcontour( p, x = NULL, y = NULL, z = NULL, ..., data = NULL, inherit = TRUE ) add_heatmap(p, x = NULL, y = NULL, z = NULL, ..., data = NULL, inherit = TRUE) add_contour(p, z = NULL, ..., data = NULL, inherit = TRUE) add_boxplot(p, x = NULL, y = NULL, ..., data = NULL, inherit = TRUE) add_surface(p, z = NULL, ..., data = NULL, inherit = TRUE) add_mesh(p, x = NULL, y = NULL, z = NULL, ..., data = NULL, inherit = TRUE) add_scattergeo(p, ...) add_choropleth(p, z = NULL, ..., data = NULL, inherit = TRUE)
p |
a plotly object |
... |
Arguments (i.e., attributes) passed along to the trace |
data |
A data frame (optional) or crosstalk::SharedData object. |
inherit |
inherit attributes from |
x |
the x variable. |
y |
the y variable. |
z |
a numeric matrix (unless |
text |
textual labels. |
xend |
"final" x position (in this context, x represents "start") |
yend |
"final" y position (in this context, y represents "start") |
rownames |
whether or not to display the rownames of |
ymin |
a variable used to define the lower boundary of a polygon. |
ymax |
a variable used to define the upper boundary of a polygon. |
colormodel |
Sets the colormodel for image traces if |
r |
Sets the radial coordinates. |
theta |
Sets the angular coordinates. |
t |
Deprecated. Use |
values |
the value to associated with each slice of the pie. |
labels |
the labels (categories) corresponding to |
Carson Sievert
# the `plot_ly()` function initiates an object, and if no trace type # is specified, it sets a sensible default p <- plot_ly(economics, x = ~date, y = ~uempmed) p # some `add_*()` functions are a specific case of a trace type # for example, `add_markers()` is a scatter trace with mode of markers add_markers(p) # scatter trace with mode of text add_text(p, text = "%") # scatter trace with mode of lines add_paths(p) # like `add_paths()`, but ensures points are connected according to `x` add_lines(p) # if you prefer to work with plotly.js more directly, can always # use `add_trace()` and specify the type yourself add_trace(p, type = "scatter", mode = "markers+lines") # mappings provided to `plot_ly()` are "global", but can be overwritten plot_ly(economics, x = ~date, y = ~uempmed, color = I("red"), showlegend = FALSE) %>% add_lines() %>% add_markers(color = ~pop) # a number of `add_*()` functions are special cases of the scatter trace plot_ly(economics, x = ~date) %>% add_ribbons(ymin = ~pce - 1e3, ymax = ~pce + 1e3) # use `group_by()` (or `group2NA()`) to apply visual mapping # once per group (e.g. one line per group) txhousing %>% group_by(city) %>% plot_ly(x = ~date, y = ~median) %>% add_lines(color = I("black")) ## Not run: # use `add_sf()` or `add_polygons()` to create geo-spatial maps # http://blog.cpsievert.me/2018/03/30/visualizing-geo-spatial-data-with-sf-and-plotly/ if (requireNamespace("sf", quietly = TRUE)) { nc <- sf::st_read(system.file("shape/nc.shp", package = "sf"), quiet = TRUE) plot_ly() %>% add_sf(data = nc) } # univariate summary statistics plot_ly(mtcars, x = ~factor(vs), y = ~mpg) %>% add_boxplot() plot_ly(mtcars, x = ~factor(vs), y = ~mpg) %>% add_trace(type = "violin") # `add_histogram()` does binning for you... mtcars %>% plot_ly(x = ~factor(vs)) %>% add_histogram() # ...but you can 'pre-compute' bar heights in R mtcars %>% dplyr::count(vs) %>% plot_ly(x = ~vs, y = ~n) %>% add_bars() # the 2d analogy of add_histogram() is add_histogram2d()/add_histogram2dcontour() library(MASS) (p <- plot_ly(geyser, x = ~waiting, y = ~duration)) add_histogram2d(p) add_histogram2dcontour(p) # the 2d analogy of add_bars() is add_heatmap()/add_contour() # (i.e., bin counts must be pre-specified) den <- kde2d(geyser$waiting, geyser$duration) p <- plot_ly(x = den$x, y = den$y, z = den$z) add_heatmap(p) add_contour(p) # `add_table()` makes it easy to map a data frame to the table trace type plot_ly(economics) %>% add_table() # pie charts! ds <- data.frame(labels = c("A", "B", "C"), values = c(10, 40, 60)) plot_ly(ds, labels = ~labels, values = ~values) %>% add_pie() %>% layout(title = "Basic Pie Chart using Plotly") data(wind) plot_ly(wind, r = ~r, t = ~t) %>% add_area(color = ~nms) %>% layout(radialaxis = list(ticksuffix = "%"), orientation = 270) # ------------------------------------------------------------ # 3D chart types # ------------------------------------------------------------ plot_ly(z = ~volcano) %>% add_surface() plot_ly(x = c(0, 0, 1), y = c(0, 1, 0), z = c(0, 0, 0)) %>% add_mesh() ## End(Not run)
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.