Obtain data associated with a plotly graph
plotly_data()
returns data associated with
a plotly visualization (if there are multiple data frames, by default,
it returns the most recent one).
plotly_data(p, id = p$x$cur_data) ## S3 method for class 'plotly' groups(x) ## S3 method for class 'plotly' ungroup(x, ...) ## S3 method for class 'plotly' group_by(.data, ...) ## S3 method for class 'plotly' mutate(.data, ...) ## S3 method for class 'plotly' do(.data, ...) ## S3 method for class 'plotly' summarise(.data, ...) ## S3 method for class 'plotly' arrange(.data, ...) ## S3 method for class 'plotly' select(.data, ...) ## S3 method for class 'plotly' filter(.data, ...) ## S3 method for class 'plotly' distinct(.data, ...) ## S3 method for class 'plotly' slice(.data, ...) ## S3 method for class 'plotly' rename(.data, ...) ## S3 method for class 'plotly' transmute(.data, ...) ## S3 method for class 'plotly' group_by_(.data, ...) ## S3 method for class 'plotly' mutate_(.data, ...) ## S3 method for class 'plotly' do_(.data, ...) ## S3 method for class 'plotly' summarise_(.data, ...) ## S3 method for class 'plotly' arrange_(.data, ...) ## S3 method for class 'plotly' select_(.data, ...) ## S3 method for class 'plotly' filter_(.data, ...) ## S3 method for class 'plotly' distinct_(.data, ...) ## S3 method for class 'plotly' slice_(.data, ...) ## S3 method for class 'plotly' rename_(.data, ...) ## S3 method for class 'plotly' transmute_(.data, ...)
p |
a plotly visualization. |
id |
a character string or number referencing an "attribute layer". |
x |
a plotly visualization. |
... |
arguments passed onto the relevant method. |
.data |
a plotly visualization. |
# use group_by() to define groups of visual markings p <- txhousing %>% group_by(city) %>% plot_ly(x = ~date, y = ~sales) p # plotly objects preserve data groupings groups(p) plotly_data(p) # dplyr verbs operate on plotly objects as if they were data frames p <- economics %>% plot_ly(x = ~date, y = ~unemploy / pop) %>% add_lines() %>% mutate(rate = unemploy / pop) %>% filter(rate == max(rate)) plotly_data(p) add_markers(p) layout(p, annotations = list(x = ~date, y = ~rate, text = "peak")) # use group_by() + do() + subplot() for trellis displays d <- group_by(mpg, drv) plots <- do(d, p = plot_ly(., x = ~cty, name = ~drv)) subplot(plots[["p"]], nrows = 3, shareX = TRUE) # arrange displays by their mean means <- summarise(d, mn = mean(cty, na.rm = TRUE)) means %>% dplyr::left_join(plots) %>% arrange(mn) %>% subplot(nrows = NROW(.), shareX = TRUE) # more dplyr verbs applied to plotly objects p <- mtcars %>% plot_ly(x = ~wt, y = ~mpg, name = "scatter trace") %>% add_markers() p %>% slice(1) %>% plotly_data() p %>% slice(1) %>% add_markers(name = "first observation") p %>% filter(cyl == 4) %>% plotly_data() p %>% filter(cyl == 4) %>% add_markers(name = "four cylinders")
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.