Split data frame, apply function, and return results in a list.
dlply( .data, .variables, .fun = NULL, ..., .progress = "none", .inform = FALSE, .drop = TRUE, .parallel = FALSE, .paropts = NULL )
.data |
data frame to be processed |
.variables |
variables to split data frame by, as |
.fun |
function to apply to each piece |
... |
other arguments passed on to |
.progress |
name of the progress bar to use, see
|
.inform |
produce informative error messages? This is turned off by default because it substantially slows processing speed, but is very useful for debugging |
.drop |
should combinations of variables that do not appear in the input data be preserved (FALSE) or dropped (TRUE, default) |
.parallel |
if |
.paropts |
a list of additional options passed into
the |
list of results
This function splits data frames by variables.
If there are no results, then this function will return
a list of length 0 (list()
).
Hadley Wickham (2011). The Split-Apply-Combine Strategy for Data Analysis. Journal of Statistical Software, 40(1), 1-29. http://www.jstatsoft.org/v40/i01/.
linmod <- function(df) { lm(rbi ~ year, data = mutate(df, year = year - min(year))) } models <- dlply(baseball, .(id), linmod) models[[1]] coef <- ldply(models, coef) with(coef, plot(`(Intercept)`, year)) qual <- laply(models, function(mod) summary(mod)$r.squared) hist(qual)
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.