Become an expert in R — Interactive courses, Cheat Sheets, certificates and more!
Get Started for Free

values

Universalistic vs. particularistic values (sample data)


Description

Dichotomous survey responses from 216 respondents to four questions (A, B, C, D) measuring tendencies towards "universalistic" or "particularistic" values. This data set appears in Goodman (2002, p. 14) as Table 4, and previously appeared in Goodman (1974) and Stouffer and Toby (1951).

Usage

data(values)

Format

A data frame with 216 observations on 4 variables representing survey responses to dichotomous questions, with 1 denoting the "particularistic" values response and 2 denoting the "universalistic" values response.

Source

Stouffer, S.A. and J. Toby. 1951. "Role conflict and personality." American Journal of Sociology. 56: 395:406.

Goodman, Leo A. 1974. "Exploratory Latent-Structure Analysis Using Both Identifiable and Unidentifiable Models." Biometrika. 61(2): 215-231.

Goodman, Leo A. 2002. "Latent Class Analysis; The Empirical Study of Latent Types, Latent Variables, and Latent Structures." in Jacques A. Hagenaars and Allan L. McCutcheon, eds. Applied Latent Class Analysis. Cambridge: Cambridge University Press.

Examples

##
## Replication of latent class models in Goodman (2002), 
## Tables 5b, 5c, and 6.
##
data(values)
f <- cbind(A,B,C,D)~1
M0 <- poLCA(f,values,nclass=1) # log-likelihood: -543.6498
M1 <- poLCA(f,values,nclass=2) # log-likelihood: -504.4677
M2 <- poLCA(f,values,nclass=3,maxiter=8000) # log-likelihood: -503.3011

poLCA

Polytomous variable Latent Class Analysis

v1.4.1
GPL (>= 2)
Authors
Drew Linzer <drew@votamatic.org>, Jeffrey Lewis <jblewis@ucla.edu>.
Initial release
2014-01-09

We don't support your browser anymore

Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.