Get features by comparison.
The features of two objects, usually a partition
defining a corpus of
interest (coi), and a partition
defining a reference corpus (ref) are compared.
The most important purpose is term extraction.
features(x, y, ...) ## S4 method for signature 'partition' features(x, y, included = FALSE, method = "chisquare", verbose = FALSE) ## S4 method for signature 'count' features( x, y, by = NULL, included = FALSE, method = "chisquare", verbose = TRUE ) ## S4 method for signature 'partition_bundle' features( x, y, included = FALSE, method = "chisquare", verbose = TRUE, mc = getOption("polmineR.mc"), progress = FALSE ) ## S4 method for signature 'count_bundle' features( x, y, included = FALSE, method = "chisquare", verbose = !progress, mc = getOption("polmineR.mc"), progress = FALSE ) ## S4 method for signature 'ngrams' features(x, y, included = FALSE, method = "chisquare", verbose = TRUE, ...) ## S4 method for signature 'Cooccurrences' features(x, y, included = FALSE, method = "ll", verbose = TRUE)
x |
A |
y |
A |
... |
further parameters |
included |
TRUE if coi is part of ref, defaults to FALSE |
method |
the statistical test to apply (chisquare or log likelihood) |
verbose |
A |
by |
the columns used for merging, if NULL (default), the p-attribute of x will be used |
mc |
logical, whether to use multicore |
progress |
logical |
Andreas Blaette
Baker, Paul (2006): Using Corpora in Discourse Analysis. London: continuum, p. 121-149 (ch. 6).
Manning, Christopher D.; Schuetze, Hinrich (1999): Foundations of Statistical Natural Language Processing. MIT Press: Cambridge, Mass., pp. 151-189 (ch. 5).
use("polmineR") kauder <- partition( "GERMAPARLMINI", speaker = "Volker Kauder", interjection = "speech", p_attribute = "word" ) all <- partition("GERMAPARLMINI", interjection = "speech", p_attribute = "word") terms_kauder <- features(x = kauder, y = all, included = TRUE) top100 <- subset(terms_kauder, rank_chisquare <= 100) head(top100) # a different way is to compare count objects kauder_count <- as(kauder, "count") all_count <- as(all, "count") terms_kauder <- features(kauder_count, all_count, included = TRUE) top100 <- subset(terms_kauder, rank_chisquare <= 100) head(top100) speakers <- partition_bundle("GERMAPARLMINI", s_attribute = "speaker") speakers <- enrich(speakers, p_attribute = "word") speaker_terms <- features(speakers[[1:5]], all, included = TRUE, progress = TRUE) dtm <- as.DocumentTermMatrix(speaker_terms, col = "chisquare") # Get features of objects in a count_bundle ref <- corpus("GERMAPARLMINI") %>% count(p_attribute = "word") cois <- corpus("GERMAPARLMINI") %>% subset(speaker %in% c("Angela Dorothea Merkel", "Hubertus Heil")) %>% split(s_attribute = "speaker") %>% count(p_attribute = "word") y <- features(cois, ref, included = TRUE, method = "chisquare", progress = TRUE)
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.