Become an expert in R — Interactive courses, Cheat Sheets, certificates and more!
Get Started for Free

barylag

Barycentric Lagrange Interpolation


Description

Barycentric Lagrange interpolation in one dimension.

Usage

barylag(xi, yi, x)

Arguments

xi, yi

x- and y-coordinates of supporting nodes.

x

x-coordinates of interpolation points.

Details

barylag interpolates the given data using the barycentric Lagrange interpolation formula (vectorized to remove all loops).

Value

Values of interpolated data at points x.

Note

Barycentric interpolation is preferred because of its numerical stability.

References

Berrut, J.-P., and L. Nick Trefethen (2004). “Barycentric Lagrange Interpolation”. SIAM Review, Vol. 46(3), pp.501–517.

See Also

Lagrange or Newton interpolation.

Examples

##  Generates an example with plot.
# Input:
#   fun  ---  function that shall be 'approximated'
#   a, b ---  interval [a, b] to be used for the example
#   n    ---  number of supporting nodes
#   m    ---  number of interpolation points
# Output
#   plot of function, interpolation, and nodes
#   return value is NULL (invisible)
## Not run: 
barycentricExample <- function(fun, a, b, n, m)
{
	xi <- seq(a, b, len=n)
	yi <- fun(xi)
	x  <- seq(a, b, len=m)

	y <- barylag(xi, yi, x)
	plot(xi, yi, col="red", xlab="x", ylab="y",
		main="Example of barycentric interpolation")

	lines(x, fun(x), col="yellow", lwd=2)
	lines(x, y, col="darkred")

	grid()
}

barycentricExample(sin, -pi, pi, 11, 101)  # good interpolation
barycentricExample(runge, -1, 1, 21, 101)  # bad interpolation

## End(Not run)

pracma

Practical Numerical Math Functions

v2.3.3
GPL (>= 3)
Authors
Hans W. Borchers [aut, cre]
Initial release
2021-01-22

We don't support your browser anymore

Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.