Parametric Curve Fit
Polynomial fitting of parametrized points on 2D curves, also requiring to meet some points exactly.
curvefit(u, x, y, n, U = NULL, V = NULL)
u |
the parameter vector. |
x, y |
x-, y-coordinates for each parameter value. |
n |
order of the polynomials, the same in x- and y-dirction. |
U |
parameter values where points will be fixed. |
V |
matrix with two columns and |
This function will attempt to fit two polynomials to parametrized curve
points using the linear least squares approach with linear equality
constraints in lsqlin
. The requirement to meet exactly some fixed
points is interpreted as a linear equality constraint.
Returns a list with 4 components, xp
and yp
coordinates of
the fitted points, and px
and py
the coefficients of the
fitting polynomials in x- and y-direction.
In the same manner, derivatives/directions could be prescribed at certain points.
## Approximating half circle arc with small perturbations N <- 50 u <- linspace(0, pi, N) x <- cos(u) + 0.05 * randn(1, N) y <- sin(u) + 0.05 * randn(1, N) n <- 8 cfit1 <- curvefit(u, x, y, n) ## Not run: plot(x, y, col = "darkgray", pch = 19, asp = 1) xp <- cfit1$xp; yp <- cfit1$yp lines(xp, yp, col="blue") grid() ## End(Not run) ## Fix the end points at t = 0 and t = pi U <- c(0, pi) V <- matrix(c(1, 0, -1, 0), 2, 2, byrow = TRUE) cfit2 <- curvefit(u, x, y, n, U, V) ## Not run: xp <- cfit2$xp; yp <- cfit2$yp lines(xp, yp, col="red") ## End(Not run) ## Not run: ## Archimedian spiral n <- 8 u <- linspace(0, 3*pi, 50) a <- 1.0 x <- as.matrix(a*u*cos(u)) y <- as.matrix(a*u*sin(u)) plot(x, y, type = "p", pch = 19, col = "darkgray", asp = 1) lines(x, y, col = "darkgray", lwd = 3) cfit <- curvefit(u, x, y, n) px <- c(cfit$px); py <- c(cfit$py) v <- linspace(0, 3*pi, 200) xs <- polyval(px, v) ys <- polyval(py, v) lines(xs, ys, col = "navy") grid() ## End(Not run)
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.