Gauss-Legendre Quadrature Formula
Nodes and weights for the n-point Gauss-Legendre quadrature formula.
gaussLegendre(n, a, b)
n |
Number of nodes in the interval |
a, b |
lower and upper limit of the integral; must be finite. |
x
and w
are obtained from a tridiagonal eigenvalue problem.
List with components x
, the nodes or points in[a,b]
, and
w
, the weights applied at these nodes.
Gauss quadrature is not suitable for functions with singularities.
Gautschi, W. (2004). Orthogonal Polynomials: Computation and Approximation. Oxford University Press.
Trefethen, L. N. (2000). Spectral Methods in Matlab. SIAM, Society for Industrial and Applied Mathematics.
## Quadrature with Gauss-Legendre nodes and weights f <- function(x) sin(x+cos(10*exp(x))/3) #\dontrun{ezplot(f, -1, 1, fill = TRUE)} cc <- gaussLegendre(51, -1, 1) Q <- sum(cc$w * f(cc$x)) #=> 0.0325036515865218 , true error: < 1e-15 # If f is not vectorized, do an explicit summation: Q <- 0; x <- cc$x; w <- cc$w for (i in 1:51) Q <- Q + w[i] * f(x[i]) # If f is infinite at b = 1, set b <- b - eps (with, e.g., eps = 1e-15) # Use Gauss-Kronrod approach for error estimation cc <- gaussLegendre(103, -1, 1) abs(Q - sum(cc$w * f(cc$x))) # rel.error < 1e-10 # Use Gauss-Hermite for vector-valued functions f <- function(x) c(sin(pi*x), exp(x), log(1+x)) cc <- gaussLegendre(32, 0, 1) drop(cc$w %*% matrix(f(cc$x), ncol = 3)) # c(2/pi, exp(1) - 1, 2*log(2) - 1) # absolute error < 1e-15
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.