Become an expert in R — Interactive courses, Cheat Sheets, certificates and more!
Get Started for Free

grad

Numerical Gradient


Description

Numerical function gradient.

Usage

grad(f, x0, heps = .Machine$double.eps^(1/3), ...)

Arguments

f

function of several variables.

x0

point where the gradient is to build.

heps

step size.

...

more variables to be passed to function f.

Details

Computes the gradient

(\frac{\partial f}{\partial x_1}, …, \frac{\partial f}{\partial x_n})

numerically using the “central difference formula”.

Value

Vector of the same length as x0.

References

Mathews, J. H., and K. D. Fink (1999). Numerical Methods Using Matlab. Third Edition, Prentice Hall.

See Also

Examples

f <- function(u) {
    x <- u[1]; y <- u[2]; z <- u[3]
    return(x^3 + y^2 + z^2 +12*x*y + 2*z)
 }
x0 <- c(1,1,1)
grad(f, x0)     # 15 14  4        # direction of steepest descent

sum(grad(f, x0) * c(1, -1, 0))    # 1 , directional derivative

f <- function(x) x[1]^2 + x[2]^2
grad(f, c(0,0))                   # 0 0 , i.e. a local optimum

pracma

Practical Numerical Math Functions

v2.3.3
GPL (>= 3)
Authors
Hans W. Borchers [aut, cre]
Initial release
2021-01-22

We don't support your browser anymore

Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.