Lambert's W Function
Principal real branch of the Lambert W function.
lambertWp(x) lambertWn(x)
x |
Numeric vector of real numbers |
The Lambert W function is the inverse of x --> x e^x
, with two
real branches, W0 for x >= -1/e
and W-1 for -1/e <= x < 0
.
Here the principal branch is called lambertWp
, tho other one
lambertWp
, computed for real x
.
The value is calculated using an iteration that stems from applying Halley's method. This iteration is quite fast and accurate.
The functions is not really vectorized, but at least returns a vector of
values when presented with a numeric vector of length >= 2
.
Returns the solution w
of w*exp(w) = x
for real x
with NaN
if x < 1/exp(1)
(resp. x >= 0
for the
second branch).
See the examples how values for the second branch or the complex Lambert W function could be calculated by Newton's method.
Corless, R. M., G. H.Gonnet, D. E. G Hare, D. J. Jeffrey, and D. E. Knuth (1996). On the Lambert W Function. Advances in Computational Mathematics, Vol. 5, pp. 329-359.
## Examples lambertWp(0) #=> 0 lambertWp(1) #=> 0.5671432904097838... Omega constant lambertWp(exp(1)) #=> 1 lambertWp(-log(2)/2) #=> -log(2) # The solution of x * a^x = z is W(log(a)*z)/log(a) # x * 123^(x-1) = 3 lambertWp(3*123*log(123))/log(123) #=> 1.19183018... x <- seq(-0.35, 0.0, by=0.05) w <- lambertWn(x) w * exp(w) # max. error < 3e-16 # [1] -0.35 -0.30 -0.25 -0.20 -0.15 -0.10 -0.05 NaN ## Not run: xs <- c(-1/exp(1), seq(-0.35, 6, by=0.05)) ys <- lambertWp(xs) plot(xs, ys, type="l", col="darkred", lwd=2, ylim=c(-2,2), main="Lambert W0 Function", xlab="", ylab="") grid() points(c(-1/exp(1), 0, 1, exp(1)), c(-1, 0, lambertWp(1), 1)) text(1.8, 0.5, "Omega constant") ## End(Not run) ## Analytic derivative of lambertWp (similar for lambertWn) D_lambertWp <- function(x) { xw <- lambertWp(x) 1 / (1+xw) / exp(xw) } D_lambertWp(c(-1/exp(1), 0, 1, exp(1))) # [1] Inf 1.0000000 0.3618963 0.1839397 ## Second branch resp. the complex function lambertWm() F <- function(xy, z0) { z <- xy[1] + xy[2]*1i fz <- z * exp(z) - z0 return(c(Re(fz), Im(fz))) } newtonsys(F, c(-1, -1), z0 = -0.1) #=> -3.5771520639573 newtonsys(F, c(-1, -1), z0 = -pi/2) #=> -1.5707963267949i = -pi/2 * 1i
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.