Richardson's Numerical Derivative
Richardson's method applied to the computation of the numerical derivative.
numderiv(f, x0, maxiter = 16, h = 1/2, ..., tol = .Machine$double.eps) numdiff(f, x, maxiter = 16, h = 1/2, ..., tol = .Machine$double.eps)
f |
function to be differentiated. |
x0, x |
point(s) at which the derivative is to be computed. |
maxiter |
maximum number of iterations. |
h |
starting step size, should be the default |
tol |
relative tolerance. |
... |
variables to be passed to function |
numderiv
returns the derivative of f
at x0
, where
x0
must be a single scalar in the domain of the function.
numdiff
is a vectorized form of numderiv
such that the
derivatives will be returned at all points of the vector x
.
Numeric scalar or vector of approximated derivatives.
See grad
in the ‘numDeriv’ package for another implementation of
Richardson's method in the context of numerical differentiation.
Mathews, J. H., and K. D. Fink (1999). Numerical Methods Using Matlab. Third Edition, Prentice Hall.
# Differentiate an anti-derivative function f <- function(x) sin(x)*sqrt(1+sin(x)) F <- function(x) integrate(f, 0, x, rel.tol = 1e-12)$value x0 <- 1 dF0 <- numderiv(F, x0, tol = 6.5e-15) #=> 1.141882942715462 f(x0) # 1.141882942715464 true value # fderiv(F, x0) # 1.141882942704476 # numDeriv::grad(F, x0) # 1.141882942705797 # Compare over a whole period x <- seq(0, 2*pi, length.out = 11) max(abs(numdiff(sin, x) - cos(x))) #=> 3.44e-15 # max(abs(numDeriv::grad(sin, x) - cos(x))) # 7.70e-12 # Example from complex step f <- function(x) exp(x) / sqrt(sin(x)^3 + cos(x)^3) x0 <- 1.5 numderiv(f, x0) # 4.05342789389876, error 0.5e-12 # 4.053427893898621... true value
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.