Prime Numbers
Generate a list of prime numbers less or equal n
, resp. between
n1
and n2
.
primes(n)
n |
nonnegative integer greater than 1. |
The list of prime numbers up to n
is generated using the "sieve of
Erasthostenes". This approach is reasonably fast, but may require a lot of
main memory when n
is large.
In double precision arithmetic integers are represented exactly only up to 2^53 - 1, therefore this is the maximal allowed value.
vector of integers representing prime numbers
primes(1000) ## Not run: ## Appendix: Logarithmic Integrals and Prime Numbers (C.F.Gauss, 1846) library('gsl') # 'European' form of the logarithmic integral Li <- function(x) expint_Ei(log(x)) - expint_Ei(log(2)) # No. of primes and logarithmic integral for 10^i, i=1..12 i <- 1:12; N <- 10^i # piN <- numeric(12) # for (i in 1:12) piN[i] <- length(primes(10^i)) piN <- c(4, 25, 168, 1229, 9592, 78498, 664579, 5761455, 50847534, 455052511, 4118054813, 37607912018) cbind(i, piN, round(Li(N)), round((Li(N)-piN)/piN, 6)) # i pi(10^i) Li(10^i) rel.err # -------------------------------------- # 1 4 5 0.280109 # 2 25 29 0.163239 # 3 168 177 0.050979 # 4 1229 1245 0.013094 # 5 9592 9629 0.003833 # 6 78498 78627 0.001637 # 7 664579 664917 0.000509 # 8 5761455 5762208 0.000131 # 9 50847534 50849234 0.000033 # 10 455052511 455055614 0.000007 # 11 4118054813 4118066400 0.000003 # 12 37607912018 37607950280 0.000001 # -------------------------------------- ## End(Not run)
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.