Become an expert in R — Interactive courses, Cheat Sheets, certificates and more!
Get Started for Free

quadgr

Gaussian Quadrature with Richardson Extrapolation


Description

Gaussian 12-point quadrature with Richardson extrapolation.

Usage

quadgr(f, a, b, tol = .Machine$double.eps^(1/2), ...)

Arguments

f

integrand as function, may have singularities at the endpoints.

a, b

endpoints of the integration interval.

tol

relative tolerence.

...

Additional parameters to be passed to the function f.

Details

quadgr uses a 12-point Gauss-Legendre quadrature. The error estimate is based on successive interval bisection. Richardson extrapolation accelerates the convergence for some integrals, especially integrals with endpoint singularities.

Through some preprocessing infinite intervals can also be handled.

Value

List with value and rel.err.

Author(s)

Copyright (c) 2009 Jonas Lundgren for the Matlab function quadgr available on MatlabCentral under the BSD license.

R re-implementation by HwB, email: <hwborchers@googlemail.com>, in 2011.

See Also

gaussLegendre

Examples

##  Dilogarithm function
flog <- function(t) log(1-t)/t
quadgr(flog, 1, 0, tol = 1e-12)
# value
# 1.6449340668482 , is pi^2/6 = 1.64493406684823
# rel.err
# 2.07167616395054e-13

pracma

Practical Numerical Math Functions

v2.3.3
GPL (>= 3)
Authors
Hans W. Borchers [aut, cre]
Initial release
2021-01-22

We don't support your browser anymore

Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.