Riemann Zeta Function
Riemann's zeta function valid in the entire complex plane.
zeta(z)
z |
Real or complex number or a numeric or complex vector. |
Computes the zeta function for complex arguments using a series expansion for Dirichlet's eta function.
Accuracy is about 7 significant digits for abs(z)<50
,
drops off with higher absolute values.
Returns a complex vector of function values.
Copyright (c) 2001 Paul Godfrey for a Matlab version available on Mathwork's Matlab Central under BSD license.
Zhang, Sh., and J. Jin (1996). Computation of Special Functions. Wiley-Interscience, New York.
## First zero on the critical line s = 0.5 + i t ## Not run: x <- seq(0, 20, len=1001) z <- 0.5 + x*1i fr <- Re(zeta(z)) fi <- Im(zeta(z)) fa <- abs(zeta(z)) plot(x, fa, type="n", xlim = c(0, 20), ylim = c(-1.5, 2.5), xlab = "Imaginary part (on critical line)", ylab = "Function value", main = "Riemann's Zeta Function along the critical line") lines(x, fr, col="blue") lines(x, fi, col="darkgreen") lines(x, fa, col = "red", lwd = 2) points(14.1347, 0, col = "darkred") legend(0, 2.4, c("real part", "imaginary part", "absolute value"), lty = 1, lwd = c(1, 1, 2), col = c("blue", "darkgreen", "red")) grid() ## End(Not run)
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.