Quantile Normalization carried out separately within blocks of rows
Using a normalization based upon quantiles this function normalizes the columns of a matrix such that different subsets of rows get normalized together.
normalize.quantiles.in.blocks(x,blocks,copy=TRUE)
x |
A matrix of intensities where each column corresponds to a chip and each row is a probe. |
copy |
Make a copy of matrix before normalizing. Usually safer to work with a copy |
blocks |
A vector giving block membership for each each row |
From normalize.quantiles.use.target
a normalized matrix
.
Ben Bolstad, bmb@bmbolstad.com
Bolstad, B (2001) Probe Level Quantile Normalization of High Density Oligonucleotide Array Data. Unpublished manuscript http://bmbolstad.com/stuff/qnorm.pdf
Bolstad, B. M., Irizarry R. A., Astrand, M, and Speed, T. P. (2003) A Comparison of Normalization Methods for High Density Oligonucleotide Array Data Based on Bias and Variance. Bioinformatics 19(2) ,pp 185-193. http://bmbolstad.com/misc/normalize/normalize.html
### setup the data blocks <- c(rep(1,5),rep(2,5),rep(3,5)) par(mfrow=c(3,2)) x <- matrix(c(rexp(5,0.05),rnorm(5),rnorm(5,10))) boxplot(x ~ blocks) y <- matrix(c(-rexp(5,0.05),rnorm(5,10),rnorm(5))) boxplot(y ~ blocks) pre.norm <- cbind(x,y) ### the in.blocks version post.norm <- normalize.quantiles.in.blocks(pre.norm,blocks) boxplot(post.norm[,1] ~ blocks) boxplot(post.norm[,2] ~ blocks) ### the usual version post.norm <- normalize.quantiles(pre.norm) boxplot(post.norm[,1] ~ blocks) boxplot(post.norm[,2] ~ blocks)
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.