Become an expert in R — Interactive courses, Cheat Sheets, certificates and more!
Get Started for Free

rq.fit.lasso

Lasso Penalized Quantile Regression


Description

The fitting method implements the lasso penalty of Tibshirani for fitting quantile regression models. When the argument lambda is a scalar the penalty function is the l1 norm of the last (p-1) coefficients, under the presumption that the first coefficient is an intercept parameter that should not be subject to the penalty. When lambda is a vector it should have length equal the column dimension of the matrix x and then defines a coordinatewise specific vector of lasso penalty parameters. In this case lambda entries of zero indicate covariates that are not penalized. There should be a sparse version of this, but isn't (yet).

Usage

rq.fit.lasso(x, y, tau = 0.5, lambda = 1, beta = .99995, eps = 1e-06)

Arguments

x

the design matrix

y

the response variable

tau

the quantile desired, defaults to 0.5.

lambda

the value of the penalty parameter(s) that determine how much shrinkage is done. This should be either a scalar, or a vector of length equal to the column dimension of the x matrix.

beta

step length parameter for Frisch-Newton method.

eps

tolerance parameter for convergence.

Value

Returns a list with a coefficient, residual, tau and lambda components. When called from "rq" (as intended) the returned object has class "lassorqs".

Author(s)

R. Koenker

References

Koenker, R. (2005 Quantile Regression, CUP.

See Also

Examples

n <- 60
p <- 7
rho <- .5
beta <- c(3,1.5,0,2,0,0,0)
R <- matrix(0,p,p)
for(i in 1:p){
        for(j in 1:p){
                R[i,j] <- rho^abs(i-j)
                }
        }
set.seed(1234)
x <- matrix(rnorm(n*p),n,p) %*% t(chol(R))
y <- x %*% beta + rnorm(n)

f <- rq(y ~ x, method="lasso",lambda = 30)
g <- rq(y ~ x, method="lasso",lambda = c(rep(0,4),rep(30,4)))

quantreg

Quantile Regression

v5.85
GPL (>= 2)
Authors
Roger Koenker [cre, aut], Stephen Portnoy [ctb] (Contributions to Censored QR code), Pin Tian Ng [ctb] (Contributions to Sparse QR code), Blaise Melly [ctb] (Contributions to preprocessing code), Achim Zeileis [ctb] (Contributions to dynrq code essentially identical to his dynlm code), Philip Grosjean [ctb] (Contributions to nlrq code), Cleve Moler [ctb] (author of several linpack routines), Yousef Saad [ctb] (author of sparskit2), Victor Chernozhukov [ctb] (contributions to extreme value inference code), Ivan Fernandez-Val [ctb] (contributions to extreme value inference code), Brian D Ripley [trl, ctb] (Initial (2001) R port from S (to my everlasting shame -- how could I have been so slow to adopt R!) and for numerous other suggestions and useful advice)
Initial release

We don't support your browser anymore

Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.