Become an expert in R — Interactive courses, Cheat Sheets, certificates and more!
Get Started for Free

rqProcess

Compute Standardized Quantile Regression Process


Description

Computes a standardize quantile regression process for the model specified by the formula, on the partition of [0,1] specified by the taus argument, and standardized according to the argument nullH. Intended for use in KhmaladzeTest.

Usage

rqProcess(formula, data, taus, nullH = "location", ...)

Arguments

formula

model formula

data

data frame to be used to interpret formula

taus

quantiles at which the process is to be evaluated, if any of the taus lie outside (0,1) then the full process is computed for all distinct solutions.

nullH

Null hypothesis to be used for standardization

...

optional arguments passed to summary.rq

Details

The process computes standardized estimates based on the hypothesis specified in the nullH argument. The Vhat component is rescaled by the Cholesky decomposition of the tau specific covariance matrix, the vhat component is rescaled by the marginal standard errors. The nature of the covariance matrix used for the standardization is controlled arguments passed via the ... argument to summary.rq. If the full process is estimated then these covariance options aren't available and only a simple iid-error form of the covariance matrix is used.

Value

taus

The points of evaluation of the process

qtaus

Values of xbar'betahat(taus)

Vhat

Joint parametric QR process

vhat

Marginal parametric QR processes

Author(s)

R. Koenker

See Also


quantreg

Quantile Regression

v5.85
GPL (>= 2)
Authors
Roger Koenker [cre, aut], Stephen Portnoy [ctb] (Contributions to Censored QR code), Pin Tian Ng [ctb] (Contributions to Sparse QR code), Blaise Melly [ctb] (Contributions to preprocessing code), Achim Zeileis [ctb] (Contributions to dynrq code essentially identical to his dynlm code), Philip Grosjean [ctb] (Contributions to nlrq code), Cleve Moler [ctb] (author of several linpack routines), Yousef Saad [ctb] (author of sparskit2), Victor Chernozhukov [ctb] (contributions to extreme value inference code), Ivan Fernandez-Val [ctb] (contributions to extreme value inference code), Brian D Ripley [trl, ctb] (Initial (2001) R port from S (to my everlasting shame -- how could I have been so slow to adopt R!) and for numerous other suggestions and useful advice)
Initial release

We don't support your browser anymore

Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.