Spatial model predictions
Make a Raster object with predictions from a fitted model object (for example, obtained with lm
, glm
). The first argument is a Raster object with the independent (predictor) variables. The names
in the Raster object should exactly match those expected by the model. This will be the case if the same Raster object was used (via extract
) to obtain the values to fit the model (see the example). Any type of model (e.g. glm, gam, randomForest) for which a predict method has been implemented (or can be implemented) can be used.
This approach (predict a fitted model to raster data) is commonly used in remote sensing (for the classification of satellite images) and in ecology, for species distribution modeling.
## S4 method for signature 'Raster' predict(object, model, filename="", fun=predict, ext=NULL, const=NULL, index=1, na.rm=TRUE, inf.rm=FALSE, factors=NULL, format, datatype, overwrite=FALSE, progress='', ...)
object |
Raster* object. Typically a multi-layer type (RasterStack or RasterBrick) |
model |
fitted model of any class that has a 'predict' method (or for which you can supply a similar method as |
filename |
character. Optional output filename |
fun |
function. Default value is 'predict', but can be replaced with e.g. predict.se (depending on the type of model), or your own custom function. |
ext |
Extent object to limit the prediction to a sub-region of |
const |
data.frame. Can be used to add a constant for which there is no Raster object for model predictions. Particularly useful if the constant is a character-like factor value for which it is currently not possible to make a RasterLayer |
index |
integer. To select the column(s) to use if predict.'model' returns a matrix with multiple columns |
na.rm |
logical. Remove cells with |
inf.rm |
logical. Remove cells with values that are not finite (some models will fail with -Inf/Inf values). This option is ignored when |
factors |
list with levels for factor variables. The list elements should be named with names that correspond to names in |
format |
character. Output file type. See writeRaster (optional) |
datatype |
character. Output data type. See dataType (optional) |
overwrite |
logical. If TRUE, "filename" will be overwritten if it exists |
progress |
character. "text", "window", or "" (the default, no progress bar) |
... |
additional arguments to pass to the predict.'model' function |
RasterLayer or RasterBrick
For more on the use of the predict function see this resource on species distribution modeling.
Use interpolate
if your model has 'x' and 'y' as implicit independent variables (e.g., in kriging).
# A simple model to predict the location of the R in the R-logo using 20 presence points # and 50 (random) pseudo-absence points. This type of model is often used to predict # species distributions. See the dismo package for more of that. # create a RasterStack or RasterBrick with with a set of predictor layers logo <- brick(system.file("external/rlogo.grd", package="raster")) names(logo) ## Not run: # the predictor variables par(mfrow=c(2,2)) plotRGB(logo, main='logo') plot(logo, 1, col=rgb(cbind(0:255,0,0), maxColorValue=255)) plot(logo, 2, col=rgb(cbind(0,0:255,0), maxColorValue=255)) plot(logo, 3, col=rgb(cbind(0,0,0:255), maxColorValue=255)) par(mfrow=c(1,1)) ## End(Not run) # known presence and absence points p <- matrix(c(48, 48, 48, 53, 50, 46, 54, 70, 84, 85, 74, 84, 95, 85, 66, 42, 26, 4, 19, 17, 7, 14, 26, 29, 39, 45, 51, 56, 46, 38, 31, 22, 34, 60, 70, 73, 63, 46, 43, 28), ncol=2) a <- matrix(c(22, 33, 64, 85, 92, 94, 59, 27, 30, 64, 60, 33, 31, 9, 99, 67, 15, 5, 4, 30, 8, 37, 42, 27, 19, 69, 60, 73, 3, 5, 21, 37, 52, 70, 74, 9, 13, 4, 17, 47), ncol=2) # extract values for points xy <- rbind(cbind(1, p), cbind(0, a)) v <- data.frame(cbind(pa=xy[,1], extract(logo, xy[,2:3]))) #build a model, here an example with glm model <- glm(formula=pa~., data=v) #predict to a raster r1 <- predict(logo, model, progress='text') plot(r1) points(p, bg='blue', pch=21) points(a, bg='red', pch=21) # use a modified function to get a RasterBrick with p and se # from the glm model. The values returned by 'predict' are in a list, # and this list needs to be transformed to a matrix predfun <- function(model, data) { v <- predict(model, data, se.fit=TRUE) cbind(p=as.vector(v$fit), se=as.vector(v$se.fit)) } # predfun returns two variables, so use index=1:2 r2 <- predict(logo, model, fun=predfun, index=1:2) ## Not run: # You can use multiple cores to speed up the predict function # by calling it via the clusterR function (you may need to install the snow package) beginCluster() r1c <- clusterR(logo, predict, args=list(model)) r2c <- clusterR(logo, predict, args=list(model=model, fun=predfun, index=1:2)) ## End(Not run) # principal components of a RasterBrick # here using sampling to simulate an object too large # to feed all its values to prcomp sr <- sampleRandom(logo, 100) pca <- prcomp(sr) # note the use of the 'index' argument x <- predict(logo, pca, index=1:3) plot(x) ## Not run: # partial least square regression library(pls) model <- plsr(formula=pa~., data=v) # this returns an array: predict(model, v[1:5,]) # write a function to turn that into a matrix pfun <- function(x, data) { y <- predict(x, data) d <- dim(y) dim(y) <- c(prod(d[1:2]), d[3]) y } pp <- predict(logo, model, fun=pfun, index=1:3) # Random Forest library(randomForest) rfmod <- randomForest(pa ~., data=v) ## note the additional argument "type='response'" that is ## passed to predict.randomForest r3 <- predict(logo, rfmod, type='response', progress='window') ## get a RasterBrick with class membership probabilities vv <- v vv$pa <- as.factor(vv$pa) rfmod2 <- randomForest(pa ~., data=vv) r4 <- predict(logo, rfmod2, type='prob', index=1:2) spplot(r4) # cforest (other Random Forest implementation) example with factors argument v$red <- as.factor(round(v$red/100)) logo$red <- round(logo[[1]]/100) library(party) m <- cforest(pa~., control=cforest_unbiased(mtry=3), data=v) f <- list(levels(v$red)) names(f) <- 'red' # the second argument in party:::predict.RandomForest # is "OOB", and not "newdata" or similar. We need to write a wrapper # predict function to deal with this predfun <- function(m, d, ...) predict(m, newdata=d, ...) pc <- predict(logo, m, OOB=TRUE, factors=f, fun=predfun) # knn example, using calc instead of predict library(class) cl <- factor(c(rep(1, nrow(p)), rep(0, nrow(a)))) train <- extract(logo, rbind(p, a)) k <- calc(logo, function(x) as.integer(as.character(knn(train, x, cl)))) ## End(Not run)
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.