Imputation of numeric variables via a linear model.
step_impute_linear
creates a specification of a recipe step that will
create linear regression models to impute missing data.
step_impute_linear( recipe, ..., role = NA, trained = FALSE, impute_with = imp_vars(all_predictors()), models = NULL, skip = FALSE, id = rand_id("impute_linear") ) ## S3 method for class 'step_impute_linear' tidy(x, ...)
recipe |
A recipe object. The step will be added to the sequence of operations for this recipe. |
... |
One or more selector functions to choose variables. For
|
role |
Not used by this step since no new variables are created. |
trained |
A logical to indicate if the quantities for preprocessing have been estimated. |
impute_with |
A call to |
models |
The |
skip |
A logical. Should the step be skipped when the
recipe is baked by |
id |
A character string that is unique to this step to identify it. |
x |
A |
For each variable requiring imputation, a linear model is fit
where the outcome is the variable of interest and the predictors are any
other variables listed in the impute_with
formula. Note that if a variable
that is to be imputed is also in impute_with
, this variable will be ignored.
The variable(s) to be imputed must be of type numeric
. The imputed values
will keep the same type as their original data (i.e, model predictions are
coerced to integer as needed).
Since this is a linear regression, the imputation model only uses complete cases for the training set predictors.
An updated version of recipe
with the new step added to the
sequence of existing steps (if any). For the tidy
method, a tibble with
columns terms
(the selectors or variables selected) and model
(the
bagged tree object).
Kuhn, M. and Johnson, K. (2013). Feature Engineering and Selection https://bookdown.org/max/FES/handling-missing-data.html
data(ames, package = "modeldata") set.seed(393) ames_missing <- ames ames_missing$Longitude[sample(1:nrow(ames), 200)] <- NA imputed_ames <- recipe(Sale_Price ~ ., data = ames_missing) %>% step_impute_linear( Longitude, impute_with = imp_vars(Latitude, Neighborhood, MS_Zoning, Alley) ) %>% prep(ames_missing) imputed <- bake(imputed_ames, new_data = ames_missing) %>% dplyr::rename(imputed = Longitude) %>% bind_cols(ames %>% dplyr::select(original = Longitude)) %>% bind_cols(ames_missing %>% dplyr::select(Longitude)) %>% dplyr::filter(is.na(Longitude)) library(ggplot2) ggplot(imputed, aes(x = original, y = imputed)) + geom_abline(col = "green") + geom_point(alpha = .3) + coord_equal() + labs(title = "Imputed Values")
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.