Plot Effects of Variables Estimated by a Regression Model Fit
Uses lattice
graphics to plot the effect of one or two predictors
on the linear predictor or X beta scale, or on some transformation of
that scale. The first argument specifies the result of the
Predict
function. The predictor is always plotted in its
original coding. plot.Predict
uses the
xYplot
function unless formula
is omitted and the x-axis
variable is a factor, in which case it reverses the x- and y-axes and
uses the Dotplot
function.
If data
is given, a rug plot is drawn showing
the location/density of data values for the x-axis variable. If
there is a groups
(superposition) variable that generated separate
curves, the data density specific to each class of points is shown.
This assumes that the second variable was a factor variable. The rug plots
are drawn by scat1d
. When the same predictor is used on all
x-axes, and multiple panels are drawn, you can use
subdata
to specify an expression to subset according to other
criteria in addition.
To plot effects instead of estimates (e.g., treatment differences as a
function of interacting factors) see contrast.rms
and
summary.rms
.
pantext
creates a lattice
panel function for including
text such as that produced by print.anova.rms
inside a panel or
in a base graphic.
## S3 method for class 'Predict' plot(x, formula, groups=NULL, cond=NULL, varypred=FALSE, subset, xlim, ylim, xlab, ylab, data=NULL, subdata, anova=NULL, pval=FALSE, cex.anova=.85, col.fill=gray(seq(.825, .55, length=5)), adj.subtitle, cex.adj, cex.axis, perim=NULL, digits=4, nlevels=3, nlines=FALSE, addpanel, scat1d.opts=list(frac=0.025, lwd=0.3), type=NULL, yscale=NULL, scaletrans=function(z) z, ...) pantext(object, x, y, cex=.5, adj=0, fontfamily="Courier", lattice=TRUE)
x |
a data frame created by |
formula |
the right hand side of a |
groups |
an optional name of one of the variables in |
cond |
when plotting effects of different predictors, |
varypred |
set to |
subset |
a subsetting expression for restricting the rows of
|
xlim |
This parameter is seldom used, as limits are usually controlled with
|
ylim |
Range for plotting on response variable axis. Computed by default. |
xlab |
Label for |
ylab |
Label for |
data |
a data frame containing the original raw data on which the
regression model were based, or at least containing the x-axis
and grouping variable. If |
subdata |
if |
anova |
an object returned by |
pval |
specify |
cex.anova |
character size for the test statistic printed on the panel |
col.fill |
a vector of colors used to fill confidence bands for successive superposed groups. Default is inceasingly dark gray scale. |
adj.subtitle |
Set to |
cex.adj |
|
cex.axis |
|
perim |
|
digits |
Controls how numeric variables used for panel labels are formatted. The default is 4 significant digits. |
nlevels |
when |
nlines |
If |
addpanel |
an additional panel function to call along with panel
functions used for |
scat1d.opts |
a list containing named elements that specifies
parameters to |
type |
a value ( |
yscale |
a |
scaletrans |
a function that operates on the |
... |
extra arguments to pass to |
object |
an object having a |
y |
y-coordinate for placing text in a |
cex |
character expansion size for |
adj |
text justification. Default is left justified. |
fontfamily |
font family for |
lattice |
set to |
When a groups
(superpositioning) variable was used, you can issue
the command Key(...)
after printing the result of
plot.Predict
, to draw a key for the groups.
a lattice
object ready to print
for rendering.
If plotting the effects of all predictors you can reorder the
panels using for example p <- Predict(fit); p$.predictor. <-
factor(p$.predictor., v)
where v
is a vector of predictor
names specified in the desired order.
Frank Harrell
Department of Biostatistics, Vanderbilt University
fh@fharrell.com
Fox J, Hong J (2009): Effect displays in R for multinomial and proportional-odds logit models: Extensions to the effects package. J Stat Software 32 No. 1.
Predict
, ggplot.Predict
,
link{plotp.Predict}
, rbind.Predict
,
datadist
, predictrms
, anova.rms
,
contrast.rms
, summary.rms
,
rms
, rmsMisc
,
labcurve
, scat1d
,
xYplot
, Overview
n <- 1000 # define sample size set.seed(17) # so can reproduce the results age <- rnorm(n, 50, 10) blood.pressure <- rnorm(n, 120, 15) cholesterol <- rnorm(n, 200, 25) sex <- factor(sample(c('female','male'), n,TRUE)) label(age) <- 'Age' # label is in Hmisc label(cholesterol) <- 'Total Cholesterol' label(blood.pressure) <- 'Systolic Blood Pressure' label(sex) <- 'Sex' units(cholesterol) <- 'mg/dl' # uses units.default in Hmisc units(blood.pressure) <- 'mmHg' # Specify population model for log odds that Y=1 L <- .4*(sex=='male') + .045*(age-50) + (log(cholesterol - 10)-5.2)*(-2*(sex=='female') + 2*(sex=='male')) # Simulate binary y to have Prob(y=1) = 1/[1+exp(-L)] y <- ifelse(runif(n) < plogis(L), 1, 0) ddist <- datadist(age, blood.pressure, cholesterol, sex) options(datadist='ddist') fit <- lrm(y ~ blood.pressure + sex * (age + rcs(cholesterol,4)), x=TRUE, y=TRUE) an <- anova(fit) # Plot effects of all 4 predictors with test statistics from anova, and P plot(Predict(fit), anova=an, pval=TRUE) plot(Predict(fit), data=llist(blood.pressure,age)) # rug plot for two of the predictors p <- Predict(fit, name=c('age','cholesterol')) # Make 2 plots plot(p) p <- Predict(fit, age=seq(20,80,length=100), sex, conf.int=FALSE) # Plot relationship between age and log # odds, separate curve for each sex, plot(p, subset=sex=='female' | age > 30) # No confidence interval, suppress estimates for males <= 30 p <- Predict(fit, age, sex) plot(p, label.curves=FALSE, data=llist(age,sex)) # use label.curves=list(keys=c('a','b'))' # to use 1-letter abbreviations # data= allows rug plots (1-dimensional scatterplots) # on each sex's curve, with sex- # specific density of age # If data were in data frame could have used that p <- Predict(fit, age=seq(20,80,length=100), sex='male', fun=plogis) # works if datadist not used plot(p, ylab=expression(hat(P))) # plot predicted probability in place of log odds per <- function(x, y) x >= 30 plot(p, perim=per) # suppress output for age < 30 but leave scale alone # Take charge of the plot setup by specifying a lattice formula p <- Predict(fit, age, blood.pressure=c(120,140,160), cholesterol=c(180,200,215), sex) plot(p, ~ age | blood.pressure*cholesterol, subset=sex=='male') # plot(p, ~ age | cholesterol*blood.pressure, subset=sex=='female') # plot(p, ~ blood.pressure|cholesterol*round(age,-1), subset=sex=='male') plot(p) # Plot the age effect as an odds ratio # comparing the age shown on the x-axis to age=30 years ddist$limits$age[2] <- 30 # make 30 the reference value for age # Could also do: ddist$limits["Adjust to","age"] <- 30 fit <- update(fit) # make new reference value take effect p <- Predict(fit, age, ref.zero=TRUE, fun=exp) plot(p, ylab='Age=x:Age=30 Odds Ratio', abline=list(list(h=1, lty=2, col=2), list(v=30, lty=2, col=2))) # Compute predictions for three predictors, with superpositioning or # conditioning on sex, combined into one graph p1 <- Predict(fit, age, sex) p2 <- Predict(fit, cholesterol, sex) p3 <- Predict(fit, blood.pressure, sex) p <- rbind(age=p1, cholesterol=p2, blood.pressure=p3) plot(p, groups='sex', varypred=TRUE, adj.subtitle=FALSE) plot(p, cond='sex', varypred=TRUE, adj.subtitle=FALSE) ## Not run: # For males at the median blood pressure and cholesterol, plot 3 types # of confidence intervals for the probability on one plot, for varying age ages <- seq(20, 80, length=100) p1 <- Predict(fit, age=ages, sex='male', fun=plogis) # standard pointwise p2 <- Predict(fit, age=ages, sex='male', fun=plogis, conf.type='simultaneous') # simultaneous p3 <- Predict(fit, age=c(60,65,70), sex='male', fun=plogis, conf.type='simultaneous') # simultaneous 3 pts # The previous only adjusts for a multiplicity of 3 points instead of 100 f <- update(fit, x=TRUE, y=TRUE) g <- bootcov(f, B=500, coef.reps=TRUE) p4 <- Predict(g, age=ages, sex='male', fun=plogis) # bootstrap percentile p <- rbind(Pointwise=p1, 'Simultaneous 100 ages'=p2, 'Simultaneous 3 ages'=p3, 'Bootstrap nonparametric'=p4) xYplot(Cbind(yhat, lower, upper) ~ age, groups=.set., data=p, type='l', method='bands', label.curve=list(keys='lines')) ## End(Not run) # Plots for a parametric survival model n <- 1000 set.seed(731) age <- 50 + 12*rnorm(n) label(age) <- "Age" sex <- factor(sample(c('Male','Female'), n, rep=TRUE, prob=c(.6, .4))) cens <- 15*runif(n) h <- .02*exp(.04*(age-50)+.8*(sex=='Female')) t <- -log(runif(n))/h label(t) <- 'Follow-up Time' e <- ifelse(t<=cens,1,0) t <- pmin(t, cens) units(t) <- "Year" ddist <- datadist(age, sex) Srv <- Surv(t,e) # Fit log-normal survival model and plot median survival time vs. age f <- psm(Srv ~ rcs(age), dist='lognormal') med <- Quantile(f) # Creates function to compute quantiles # (median by default) p <- Predict(f, age, fun=function(x) med(lp=x)) plot(p, ylab="Median Survival Time") # Note: confidence intervals from this method are approximate since # they don't take into account estimation of scale parameter # Fit an ols model to log(y) and plot the relationship between x1 # and the predicted mean(y) on the original scale without assuming # normality of residuals; use the smearing estimator # See help file for rbind.Predict for a method of showing two # types of confidence intervals simultaneously. set.seed(1) x1 <- runif(300) x2 <- runif(300) ddist <- datadist(x1,x2) y <- exp(x1+x2-1+rnorm(300)) f <- ols(log(y) ~ pol(x1,2)+x2) r <- resid(f) smean <- function(yhat)smearingEst(yhat, exp, res, statistic='mean') formals(smean) <- list(yhat=numeric(0), res=r[!is.na(r)]) #smean$res <- r[!is.na(r)] # define default res argument to function plot(Predict(f, x1, fun=smean), ylab='Predicted Mean on y-scale') # Make an 'interaction plot', forcing the x-axis variable to be # plotted at integer values but labeled with category levels n <- 100 set.seed(1) gender <- c(rep('male', n), rep('female',n)) m <- sample(c('a','b'), 2*n, TRUE) d <- datadist(gender, m); options(datadist='d') anxiety <- runif(2*n) + .2*(gender=='female') + .4*(gender=='female' & m=='b') tapply(anxiety, llist(gender,m), mean) f <- ols(anxiety ~ gender*m) p <- Predict(f, gender, m) plot(p) # horizontal dot chart; usually preferred for categorical predictors Key(.5, .5) plot(p, ~gender, groups='m', nlines=TRUE) plot(p, ~m, groups='gender', nlines=TRUE) plot(p, ~gender|m, nlines=TRUE) options(datadist=NULL) ## Not run: # Example in which separate curves are shown for 4 income values # For each curve the estimated percentage of voters voting for # the democratic party is plotted against the percent of voters # who graduated from college. Data are county-level percents. incomes <- seq(22900, 32800, length=4) # equally spaced to outer quintiles p <- Predict(f, college, income=incomes, conf.int=FALSE) plot(p, xlim=c(0,35), ylim=c(30,55)) # Erase end portions of each curve where there are fewer than 10 counties having # percent of college graduates to the left of the x-coordinate being plotted, # for the subset of counties having median family income with 1650 # of the target income for the curve show.pts <- function(college.pts, income.pt) { s <- abs(income - income.pt) < 1650 #assumes income known to top frame x <- college[s] x <- sort(x[!is.na(x)]) n <- length(x) low <- x[10]; high <- x[n-9] college.pts >= low & college.pts <= high } plot(p, xlim=c(0,35), ylim=c(30,55), perim=show.pts) # Rename variables for better plotting of a long list of predictors f <- ... p <- Predict(f) re <- c(trt='treatment', diabet='diabetes', sbp='systolic blood pressure') for(n in names(re)) { names(p)[names(p)==n] <- re[n] p$.predictor.[p$.predictor.==n] <- re[n] } plot(p) ## End(Not run)
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.