Plot Mean X vs. Ordinal Y
Separately for each predictor variable X in a formula, plots the mean of X vs. levels of Y. Then under the proportional odds assumption, the expected value of the predictor for each Y value is also plotted (as a dotted line). This plot is useful for assessing the ordinality assumption for Y separately for each X, and for assessing the proportional odds assumption in a simple univariable way. If several predictors do not distinguish adjacent categories of Y, those levels may need to be pooled. This display assumes that each predictor is linearly related to the log odds of each event in the proportional odds model. There is also an option to plot the expected means assuming a forward continuation ratio model.
## S3 method for class 'xmean.ordinaly' plot(x, data, subset, na.action, subn=TRUE, cr=FALSE, topcats=1, cex.points=.75, ...)
x |
an S formula. Response variable is treated as ordinal. For categorical predictors, a binary version of the variable is substituted, specifying whether or not the variable equals the modal category. Interactions or non-linear effects are not allowed. |
data |
a data frame or frame number |
subset |
vector of subscripts or logical vector describing subset of data to analyze |
na.action |
defaults to |
subn |
set to |
cr |
set to |
topcats |
When a predictor is categorical, by default only the
proportion of observations in the overall most frequent category will
be plotted against response variable strata. Specify a higher value
of |
cex.points |
if |
... |
other arguments passed to |
plots
Frank Harrell
Department of Biostatistics
Vanderbilt University
fh@fharrell.com
Harrell FE et al. (1998): Development of a clinical prediction model for an ordinal outcome. Stat in Med 17:909–44.
# Simulate data from a population proportional odds model set.seed(1) n <- 400 age <- rnorm(n, 50, 10) blood.pressure <- rnorm(n, 120, 15) region <- factor(sample(c('north','south','east','west'), n, replace=TRUE)) L <- .2*(age-50) + .1*(blood.pressure-120) p12 <- plogis(L) # Pr(Y>=1) p2 <- plogis(L-1) # Pr(Y=2) p <- cbind(1-p12, p12-p2, p2) # individual class probabilites # Cumulative probabilities: cp <- matrix(cumsum(t(p)) - rep(0:(n-1), rep(3,n)), byrow=TRUE, ncol=3) y <- (cp < runif(n)) %*% rep(1,3) # Thanks to Dave Krantz <dhk@paradox.psych.columbia.edu> for this trick par(mfrow=c(2,2)) plot.xmean.ordinaly(y ~ age + blood.pressure + region, cr=TRUE, topcats=2) par(mfrow=c(1,1)) # Note that for unimportant predictors we don't care very much about the # shapes of these plots. Use the Hmisc chiSquare function to compute # Pearson chi-square statistics to rank the variables by unadjusted # importance without assuming any ordering of the response: chiSquare(y ~ age + blood.pressure + region, g=3) chiSquare(y ~ age + blood.pressure + region, g=5)
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.