rms Version of glm
This function saves rms
attributes with the fit object so that
anova.rms
, Predict
, etc. can be used just as with ols
and other fits. No validate
or calibrate
methods exist for
Glm
though.
Glm( formula, family = gaussian, data = environment(formula), weights, subset, na.action = na.delete, start = NULL, offset = NULL, control = glm.control(...), model = TRUE, method = "glm.fit", x = FALSE, y = TRUE, contrasts = NULL, ... )
formula, family, data, weights, subset, na.action, start, offset, control, model, method, x, y, contrasts |
see |
... |
ignored
model coefficients, standard errors, etc. Specify |
For the print
method, format of output is controlled by the user
previously running options(prType="lang")
where lang
is
"plain"
(the default), "latex"
, or "html"
.
a fit object like that produced by stats::glm()
but with
rms
attributes and a class
of "rms"
, "Glm"
,
"glm"
, and "lm"
. The g
element of the fit object is
the g-index.
## Dobson (1990) Page 93: Randomized Controlled Trial : counts <- c(18,17,15,20,10,20,25,13,12) outcome <- gl(3,1,9) treatment <- gl(3,3) f <- glm(counts ~ outcome + treatment, family=poisson()) f anova(f) summary(f) f <- Glm(counts ~ outcome + treatment, family=poisson()) # could have had rcs( ) etc. if there were continuous predictors f anova(f) summary(f, outcome=c('1','2','3'), treatment=c('1','2','3'))
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.