rms Package Interface to quantreg Package
The Rq
function is the rms
front-end to the
quantreg
package's rq
function. print
and
latex
methods are also provided, and a fitting function
RqFit
is defined for use in bootstrapping, etc. Its result is a
function definition.
For the print
method, format of output is controlled by the
user previously running options(prType="lang")
where
lang
is "plain"
(the default), "latex"
, or
"html"
. For the latex
method, html
will actually
be used of options(prType='html')
.
Rq(formula, tau = 0.5, data=environment(formula), subset, weights, na.action=na.delete, method = "br", model = FALSE, contrasts = NULL, se = "nid", hs = TRUE, x = FALSE, y = FALSE, ...) ## S3 method for class 'Rq' print(x, digits=4, coefs=TRUE, title, ...) ## S3 method for class 'Rq' latex(object, file = paste(first.word(deparse(substitute(object))), ".tex", sep = ""), append=FALSE, which, varnames, columns=65, inline=FALSE, caption=NULL, ...) ## S3 method for class 'Rq' predict(object, ..., kint=1, se.fit=FALSE) RqFit(fit, wallow=TRUE, passdots=FALSE)
formula |
model formula |
tau |
the single quantile to estimate. Unlike |
data,subset,weights,na.action,method,model,contrasts,se,hs |
see
|
x |
set to |
y |
set to |
... |
other arguments passed to one of the |
digits |
number of significant digits used in formatting results in
|
coefs |
specify |
title |
a character string title to be passed to |
object |
an object created by |
file,append,which,varnames,columns,inline,caption |
see
|
kint |
ignored |
se.fit |
set to |
fit |
an object created by |
wallow |
set to |
passdots |
set to |
Rq
returns a list of class "rms", "lassorq"
or "scadrq",
"Rq"
, and "rq"
. RqFit
returns a function
definition. latex.Rq
returns an object of class "latex"
.
The author and developer of methodology in the quantreg
package
is Roger Koenker.
Frank Harrell
## Not run: set.seed(1) n <- 100 x1 <- rnorm(n) y <- exp(x1 + rnorm(n)/4) dd <- datadist(x1); options(datadist='dd') fq2 <- Rq(y ~ pol(x1,2)) anova(fq2) fq3 <- Rq(y ~ pol(x1,2), tau=.75) anova(fq3) pq2 <- Predict(fq2, x1) pq3 <- Predict(fq3, x1) p <- rbind(Median=pq2, Q3=pq3) plot(p, ~ x1 | .set.) # For superpositioning, with true curves superimposed a <- function(x, y, ...) { x <- unique(x) col <- trellis.par.get('superpose.line')$col llines(x, exp(x), col=col[1], lty=2) llines(x, exp(x + qnorm(.75)/4), col=col[2], lty=2) } plot(p, addpanel=a) ## End(Not run)
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.