Become an expert in R — Interactive courses, Cheat Sheets, certificates and more!
Get Started for Free

ced

Compositional error deviation


Description

Normalized Aitchison distance between two data sets

Usage

ced(x, y, ni)

Arguments

x

matrix or data frame

y

matrix or data frame of the same size as x

ni

normalization parameter. See details below.

Details

This function has been mainly written for procudures that evaluate imputation or replacement of rounded zeros. The ni parameter can thus, e.g. be used for expressing the number of rounded zeros.

Value

the compositinal error distance

Author(s)

Matthias Templ

References

Hron, K., Templ, M., Filzmoser, P. (2010) Imputation of missing values for compositional data using classical and robust methods Computational Statistics and Data Analysis, 54 (12), 3095-3107.

Templ, M., Hron, K., Filzmoser, P., Gardlo, A. (2016). Imputation of rounded zeros for high-dimensional compositional data. Chemometrics and Intelligent Laboratory Systems, 155, 183-190.

See Also

Examples

data(expenditures)
x <- expenditures
x[1,3] <- NA
xi <- impKNNa(x)$xImp
ced(expenditures, xi, ni = sum(is.na(x)))

robCompositions

Compositional Data Analysis

v2.3.0
GPL (>= 2)
Authors
Matthias Templ [aut, cre] (<https://orcid.org/0000-0002-8638-5276>), Karel Hron [aut] (<https://orcid.org/0000-0002-1847-6598>), Peter Filzmoser [aut] (<https://orcid.org/0000-0002-8014-4682>), Kamila Facevicova [ctb], Petra Kynclova [ctb], Jan Walach [ctb], Veronika Pintar [ctb], Jiajia Chen [ctb], Dominika Miksova [ctb], Bernhard Meindl [ctb], Alessandra Menafoglio [ctb] (<https://orcid.org/0000-0003-0682-6412>), Alessia Di Blasi [ctb], Federico Pavone [ctb], Gianluca Zeni [ctb]
Initial release
2020-11-18

We don't support your browser anymore

Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.