Become an expert in R — Interactive courses, Cheat Sheets, certificates and more!
Get Started for Free

variation

Robust and classical variation matrix


Description

Estimates the variation matrix with robust methods.

Usage

variation(x, method = "robustPivot")

Arguments

x

data frame or matrix with positive entries

method

method used for estimating covariances. See details.

Details

The variation matrix is estimated for a given compositional data set. Instead of using the classical standard deviations the miniminm covariance estimator is used (covMcd) is used when parameter robust is set to TRUE.

For method robustPivot forumala 5.8. of the book (see second reference) is used. Here robust (mcd-based) covariance estimation is done on pivot coordinates. Method robustPairwise uses a mcd covariance estimation on pairwise log-ratios. Methods Pivot (see second reference) and Pairwise (see first reference) are the non-robust counterparts. Naturally, Pivot and Pairwise gives the same results, but the computational time is much less for method Pairwise.

Value

The (robust) variation matrix.

Author(s)

Karel Hron, Matthias Templ

References

Aitchison, J. (1986) The Statistical Analysis of Compositional Data Monographs on Statistics and Applied Probability. Chapman \& Hall Ltd., London (UK). 416p.

#' Filzmoser, P., Hron, K., Templ, M. (2018) Applied Compositional Data Analysis. Springer, Cham.

Examples

data(expenditures)
variation(expenditures) # default is method "robustPivot"
variation(expenditures, method = "Pivot")
variation(expenditures, method = "robustPairwise")
variation(expenditures, method = "Pairwise") # same results as Pivot

robCompositions

Compositional Data Analysis

v2.3.0
GPL (>= 2)
Authors
Matthias Templ [aut, cre] (<https://orcid.org/0000-0002-8638-5276>), Karel Hron [aut] (<https://orcid.org/0000-0002-1847-6598>), Peter Filzmoser [aut] (<https://orcid.org/0000-0002-8014-4682>), Kamila Facevicova [ctb], Petra Kynclova [ctb], Jan Walach [ctb], Veronika Pintar [ctb], Jiajia Chen [ctb], Dominika Miksova [ctb], Bernhard Meindl [ctb], Alessandra Menafoglio [ctb] (<https://orcid.org/0000-0003-0682-6412>), Alessia Di Blasi [ctb], Federico Pavone [ctb], Gianluca Zeni [ctb]
Initial release
2020-11-18

We don't support your browser anymore

Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.