Become an expert in R — Interactive courses, Cheat Sheets, certificates and more!
Get Started for Free

lrfctd

Computation of Li, li and lip


Description

See Marazzi A. (1993), p.282-286 and p.297-298

Usage

lrfctd(icase, y, ci, vtheta, offset, wa, ni, i0, i1, i2)

Arguments

icase

Integer: 1 for Bernouilli, 2 for binomial and 3 for Poisson.

y

The y vector.

ci

The c_i vector.

vtheta

The x by theta vector.

offset

The offset vector.

wa

The a_i vector.

ni

The integer n_i vector.

i0

Integer: 1 to compute Li otherwise 0.

i1

Integer: 1 to compute li otherwise 0.

i2

Integer: 1 to compute lip otherwise 0.

Value

List with the following components :

f0

NULL if i0=0 else Li.

i1

NULL if i1=0 else li , derivative of Li.

i2

NULL if i2=0 else lip, derivative of li.

sf0

NULL if i0=0 else sum of the Li components.

References

Marazzi A. (1993) Algorithm, Routines, and S functions for Robust Statistics. Wadsworth & Brooks/cole, Pacific Grove, California. p.282-286 and p.297-298


robeth

R Functions for Robust Statistics

v2.7-6
GPL (>= 2)
Authors
Alfio Marazzi <Alfio.Marazzi@unisante.ch>
Initial release
2020-03-02

We don't support your browser anymore

Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.