Become an expert in R — Interactive courses, Cheat Sheets, certificates and more!
Get Started for Free

wygalg

Conjugate gradient algorithm for the computation of the lower-triangular matrix A in the standardized case


Description

See Marazzi A. (1993), p.127

Usage

wygalg(x, a, exu = ucv, exup = upcv, nobs = nrow(x), 
       maxit = .dFvGet()$mxg, nitmon = .dFvGet()$ntm, 
       icnv = .dFvGet()$icv, tol = .dFvGet()$tlo, 
       xfud = .dFvGet()$xfd)

Arguments

x

See reference

a

See reference

exu

See reference

exup

See reference

nobs

See reference

maxit

See reference

nitmon

See reference

icnv

See reference

tol

See reference

xfud

See reference

Value

See reference

References

Marazzi A. (1993) Algorithm, Routines, and S functions for Robust Statistics. Wadsworth & Brooks/cole, Pacific Grove, California. p.127


robeth

R Functions for Robust Statistics

v2.7-6
GPL (>= 2)
Authors
Alfio Marazzi <Alfio.Marazzi@unisante.ch>
Initial release
2020-03-02

We don't support your browser anymore

Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.